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Abstract

We propose a model of decision making that captures reluctance to
bet when the decision maker (DM) perceives that she lacks adequate in-
formation or expertise about the underlying contingencies. On the other
hand, the same DM can prefer to bet in situations where she feel spe-
cially knowledgeable or competent even the underlying contingencies have
vague likelihood. This separation is motivated by the Heath and Tversky�s
competence hypothesis as well as by the Fox and Tversky�s comparative
ignorance e¤ect. Formally, we characterize preference relations % over
Anscombe-Aumann acts represented by

J (f) = min
p2C

Z
A

u(f)dp+max
p2C

Z
Ac

u(f)dp,

where u is an a¢ ne utility index on consequences, C is a nonempty, convex
and (weak�) compact subset of probabilities measures, and A is a refer-
ential chance event. In this model there is a clear separation of ambiguity
attitudes. The case E � A captures possible familiar target events while
the case E � Ac might refers to the case of relative ignorance concerning
related contingencies. This model captures a special case of event depen-
dence of ambiguity attitudes in which the well known maxmin model is
a special case. We also characterizes the case where we have a Choquet
Expected Utility representation. Journal of Economic Literature Classi-
�cation Number : D81.

�We thank Gil Riella for useful suggestions and comments. Chateauneuf thanks IMPA for
the generous �nancial support from the Franco-Brazilian Scienti�c Cooperation and IMPA for
their hospitality. Faro gratefully acknowledges the �nancial support from "Brazilian-French
Network in Mathematics" and CERMSEM at the University of Paris I for their hospitality.
Corresponding author: José Heleno Faro; phone: +55-11-45-04-24-22; jhfaro@gmail.com.

1



Key words: Ambiguity; Competence hypothesis; Comparative igno-
rance e¤ect; Maxmin preferences; Choquet expected utility.

1 Introduction

Motivated by the well-known Ellsberg paradox (1961), ambiguity became an
important issue in decision theory that models sensibility to the lack of precise
probabilistic information. The most well known models capturing ambiguity
sensitivity are given by preference relations with a non-additive functional rep-
resentation, as in Schmeidler (1989)�s Choquet Expected Utility (CEU) and
Gilboa and Schmeidler (1989)�s Maxmin Expected Utility (MEU) models. In
this perspective, the classical additive case of Subjective Expected Utility (SEU)
of Savage (1954) (or Anscombe and Aumann (1963)) imposes strong behavioral
conditions on preferences, which includes independence, that implies in an in-
sensitive or neutral attitudes towards ambiguity1 .
The widely discussed hypothesis that people prefer to bet on known rather

unknown probabilities is the basis for the notion of ambiguity aversion (uncer-
tainty aversion). For instance, this hypothesis is essential in the MEU model
where a DM behaves as if having a set of probability measures that deter-
minates his ex ante valuation of any act by the corresponding worst expected
utility2 . Although ambiguity aversion presents many interesting applications in
economic problems3 , the generality of this pattern of attitude towards ambiguity
is questionable4 . Heath and Tversky (1991) discussed another pattern of behav-
ior where a DM might prefer to bet in a context that she considers themselves
competent than in a context where she feels ignorant or uninformed. Here,
the term competence is used in a broad sense that includes skill, knowledge or
understanding. This ideas motivate Heath and Tversky (1991) to propose the
"competence hypothesis" asserting that the DM�s willingness to bet on an event
depends not only on the estimated likelihood and the precision of that estimate,
but also on her general knowledge or understanding of the relevant context. In
the widely discussed Ellsberg urns, we have the situation of partial ignorance
characterized the inability of improving the knowdedge of the proportion of
balls in the urn. Fox and Tversky (1995) extended the Heath and Tversky�s
analysis by asking what conditions produce ignorance aversion. The main idea
in Fox and Tversky (1995) is that the DM�s con�dence betting on a target event
is enhanced (diminished) when she contrasts her knowledge of the event with
her inferior (superior) knowledge about another event, or when she compares
himself with less (more) knowledgeable individuals. In this way, the "compar-
ative ignorance hypothesis" of Fox and Tversky (1995) asserts that ambiguity

1Ghirardato and Marinacci (2002) provided a complete characterization of a comparative
notion in which the SEU model is the benchmark of ambiguity neutrality.

2 Indeed, Cerreia-Vioglio et. al. (2011) provided a representation result for uncertainty
averse preferences under a very weak notion of independence. For instance, special cases are
given by Chateauneuf and Faro (2009) and Maccheroni, Marinacci and Rustichini (2006).

3See, for instance, Section 6 in Gilboa and Marinacci (2011).
4An interesting dicussion on this topic is presented in Fox and See (2003).
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aversion is driven by a comparison with more familiar sources of uncertainty or
expert and it is diminished in the absence of such a comparison. Also, following
again Hearth and Tversky (1991), in many situations the DM�s perception of
his level of knowledge concerning a target event might be extremely positive
and that case she also may prefer to bet on her vague assessment of familiar
events rather than bet on chance events with matched probability. We aim to
focus on the cases where an event A is a clear and unambiguous reference for
the DM in terms of familiar or unfamiliar contingencies. Next, we illustrate
situations in which the DM has a referential chance event that separates her
possible patterns of behavior:

Example 1 A bet is o¤ered for a South American soccer commentator. It con-
cerns quarter�nals in World Cup composed of four American teams and four
European teams. He should bet on Cup champion. Since the commentator is
an expert on American soccer, and he does not consider himself as a specialist
on European soccer, he is optimistic in his success if an American team is cho-
sen, and pessimistic in his success if an European team is chosen. Using the
retrospect of the previous World Champions, the commentator considers that
each continent has the same chance to win the World Cup, i.e., South Amer-
ica and Europe have 50% chance of winning. In fact, it sounds reasonable to
suppose that it is not possible to assign a well de�ned probability for each team
to be the champion. In this case, the results are ambiguous and they allow the
commentator to behave di¤erently depending on the event considered.

Example 2 A pulmonologist receives a patient with a undiagnosed disease. Be-
fore any exam, he will give some hypothesis in order to guide subsequent proce-
dures. Despite his expertise in respiratory problems, the disease could be cardiac,
for instance. In the preliminary diagnosis, the doctor needs to take into account
whether the disease could be respiratory or not. Without accurate exams, the
diagnosis involves uncertainty, because the disease could not be determined on
probabilistic terms. Analyzing the frequency of patients with problems related to
other specialities in his o¢ ce, the pulmonologist considers a probability of 70%
for a disease associated with the respiratory system. If the disease pointed out
by the doctor is related to respiratory system, he will be optimistic about his
prognostic. However, if the prognostic is related to cardiac system, then he will
be pessimistic about his judgment. In this case, he will appoint a specialist in
cardiac problems. The patient need not be informed about the process of medical
decision. This paper studies a type of decision process and, in this case, this
process could be only mental.

Example 3 A stock broker specialist in technology �rms is hired by a stock
brokerage. We assume that the stock broker prefers to handle technology �rms
assets than other �rms assets. Here, uncertainty is related to the future prices
of assets. Suppose that a bet is proposed for the stock broker in which he must
point out the �rm that will have the better performance in a group of ten assets
of technologic and commodities �rms. In general, assume that it is well known
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that 30% of the time the better performance is related to technologic �rm. Nev-
ertheless, it is unclear which is the likelihood associate to any speci�c asset to
be the best.

The common feature in these examples previously discussed is the existence
of a referential event, which can viewed as an objective information that DMs
obtain before making the decision.
In Example 3, the set of states of nature can be described by all possible

performances of assets. Due to the behavior of the Stock Broker in face of
the uncertainty associated with the assets future prices, he will split the states
of nature in two groups of best performace: technology assets and commodity
assets. He will be optimistic with the �rst group and pessimistic with the second
one.
Formally, let S be the set of states of nature capturing the possible perfor-

mances of all assets. Let A be the set of events in which the Stock Broker is
pessimistic (management of commodity assets) and its complementary Ac the
set of events in which the Stock Broker is optimistic (management of techno-
logical assets).
For the Stock Broker to take a comparison, it is reasonable to think that he

has in mind a set of probability distributions in which he follows the forecast
given by highest expected utility when he manages technology assets, otherwise
he follows the forecast given by worst expected utility. In a general context,
we propose a model in which, given an act f : S ! X, the DM behaves as if
evaluating f according to the functional given by

J (f) = min
p2C

Z
A

u(f)dp+max
p2C

Z
Ac

u(f)dp;

where u : X ! R is an a¢ ne utility function and A is a referential event for the
DM in terms of perception of her expertise or ignorance5 .
In this representation, C is a set of probabilites that characterizes the DM�s

beliefs and the partition fA;Acg captures the separation of her attitudes toward
uncertainty.
This paper is organized into four sections. After this introduction, the sec-

tion 2 contains the notation and framework. The section 3 is devoted to the
axioms, main theorem and the case of Choquet Expected Utility. The last
section contains the Appendix with the proofs of our results.

2 Notation and Framework

Consider a set S of states of nature, endowed with a �-algebra � of subsets or
events, and a non-empty set X of consequences. We denote by F the set of
all (simple) acts: �nite-valued functions f : S ! X which are �-measurable6 .

5Note that our model di¤ers from the alpha-maxmin model as proposed by Ghirardato,
Maccheroni and Marinacci (2004).

6Let %0 be a binary relation on X, we say that a function f : S ! X is �-measurable if,
for all x 2 X, the sets fs 2 S : f(s) %0 xg and fs 2 S : f(s) �0 xg belong to � .
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Moreover, we denote by B0(S;�) the set of all real-valued �-measurable simple
functions a : S ! R. Given an event A 2 �; the induced characteristic function
is de�ned by the mapping 1A : S ! f0; 1g with 1A (s) = 1 , s 2 A. The
norm in B0(S;�) is given by kak1 = sups2S ja(s)j (called sup norm) and we
can de�ne the space of all bounded and �-measurable functions by taken

B(S;�) := B0(S;�)
k�k1 ;

i.e., B(S;�) consists of all uniform limits of �nite linear combinations of char-
acteristic functions of sets in � (see Dunford and Schwartz, 1958, page 240).
For any subset K � R, we de�ne B0 (K) := fa 2 B0(S;�) : a (s) 2 K;8s 2 Sg,
B(K) := B0(K)

k�k1 , and B+ := B (R+).
A set-function v : �! [0; 1] is a capacity if: (i) v(;) = 0; v(S) = 1 and (ii)

8 E;F 2 � such that E � F ) v(E) � v(F ). We say v is convex (concave) if
for any A;B 2 �,

v (A [B) + v (A \B) � (�) v (A) + v (B) :

The conjugate of a capacity v is a capacity de�ned by �v (A) := 1 � v (Ac), for
all A 2 �. It is easy to show that a capacity v is convex if, and only if, �v is
concave. For a capacity v, we de�ne:

core(v) : = f p 2 � : p (A) � v (A) 8A 2 �g, and
acore(v) : = fp 2 � : p (A) � v (A) 8A 2 �g.

It is also easy to see that core(v) = acore(�v).
A capacity p is a (�nitely additive) probability when for any E;F 2 � such

that E\F = ; we have that p (E [ F ) = p (E)+p (F ). We denote by� := �(�)
the set of all (�nitely additive) probability measures p : �! [0; 1] endowed with
the natural restriction of the well-known weak* topology � (ba;B).
Given a set of probabilities measures C � �, we say that an event A 2 � is

C-unambiguous if for all priors p; q 2 C it follows that p (A) = q (A). The convex
hull of a set C is de�ned by co (C) :=

\
fD � � : D � C and D is convexg.

Given a function a 2 B, the Choquet integral of a with respect to v is given
by Z

S

adv :=

Z 0

�1
[v (fa � �g)� 1] d�+

Z +1

0

v (fa � �g) d�,

where, fa � �g := fs 2 S : a (s) � �g. For short, we denote,
R
adv :=

R
S
a (s) v (ds).

Of course, if v is a probability measure we obtain the usual notion of integration
with additivity of integrals. Also, given a function a 2 B, for any event A 2 � ,
the integral of a over A is given byZ

A

adv :=

Z
a1Adv.

Clearly, note that u(f) 2 B0(S;�) whenever u : X ! R and f belongs
to F , where the function u(f) : S ! R is the mapping de�ned by u(f)(s) =
u(f(s)); for all s 2 S.
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Let x belong to X, de�ne x 2 F to be the constant act such that x(s) = x
for all s 2 S: Hence, we can identify X with the set Fc of constant acts in F .
Additionally, we assume that X is a convex subset of a vector space. For

instance, this is the case if X is the set of all �nite-support lotteries on a set of
prizes Z, as in the classic setting of Anscombe and Aumann (1963).
Using the linear structure of X we can de�ne as usual for every f; g 2 F and

� 2 [0; 1] the act:

�f + (1� �)g : S ! X

(�f + (1� �)g)(s) = �f(s) + (1� �)g(s):

Given f; g 2 F and A 2 �, fAg denote the act delivering the consequence
f (s) for s 2 A and g (s) for s 2 Ac. Also, we de�ne the family of acts that are
uncertain only over A by

F A = ffAx : f 2 F and x 2 Xg .

The decision maker�s preferences are given by a binary relation % on F ,
whose usual symmetric and asymmetric components are denoted by s and �.
Finally, for any f 2 F , an element xf 2 X is a certainty equivalent of f if
xf s f .

3 Axioms and Main Theorem

The class of preference that we propose here is characterized by the properties
described in the axioms below.

3.1 Axioms

A1 Nontrivial Weak Order:
A1a (Completeness) For all f and g in F : f % g or g % f:
A1b (Transitivity) For all f; g and h in F : If f % g and g % h, then f % h.
A1c (Nondegeneracy) There are f and g in F , such that f � g:
A2 Certainty Independence: For all f; g in F , x 2 X and for all � in

(0; 1):

f % g implies �f + (1� �)x % �g + (1� �)x.

A3 Continuity: For all f; g and h in F , the sets:

f� 2 [0; 1] : �f + (1� �) g % hg and f� 2 [0; 1] : h % �f + (1� �) gg are
closed in [0; 1].

A4 Monotonicity: For all f and g in F :

If f (s) % g (s) for all s 2 S; then f % g:
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A5 Event Dependence: There is a referential event A 2 �, such that, for
all f and g in F , x; y 2 X, and � 2 (0; 1) :
A5a (Uncertainty Aversion) If fAx � gAx, then �fAx + (1� �) gAx %

fAx;
A5b (Uncertainty Seeking) If fAcx � gAcx, then fAcx % �fAcx+(1� �) gAcx;
A5c (Separation) For all �x 2 X; if x � fA�x and y � �xAf , then

1

2
x+

1

2
y � 1

2
f +

1

2
�x:

Nontrivial weak order, continuity and monotonicity are the same as the ones
used in Anscombe and Aumann (1963). The Certainty Independence Axiom is
the same as the one used in Gilboa and Schmeidler (1989). Recall that this
axiom is more weaker than independence axiom fundamental for the Anscombe
and Aumann (1963)�s representation. Moreover, this axioms allows the possi-
bility of hedging, a notion impossible in the Independence axiom. In addition,
the Ellsberg paradox violates the independence axiom because the preferences
are reversed when is mixing with a nonconstant act.
Axiom A5 is more general than the well know Uncertainty Aversion axiom

fundamental for the Gilboa and Schmeidler (1989)�s representation. Neverthe-
less, this axiom considers the state space S divided in two complementary events,
A and Ac, in which the DM has di¤erent attitudes towards uncertainty over FA
and FAc . In A and its sub-events, the DM is uncertainty averse, whereas for Ac

and its sub-events the DM is uncertainty seeking (loving). Indeed, if A = S or
if for all p 2 C we have p (Ac) = 0 then Axiom A5 implies the same behavioral
pattern as the Uncertainty Aversion axiom of Schmeidler (1989).
Axiom A5c asserts that for all consequence �x 2 X and all act f , the induced

acts f1 := fA�x and f2 := �xAf generate an average of the corresponding cer-
tainty equivalents which is indi¤erent to the mixture average of f and �x. Note
that this property holds for the Subjective Expected Utility model for any pair
of acts f; g 2 F . Actually, if % is a SEU preferences, then

x � f and y � g =) 1

2
x+

1

2
y � 1

2
f +

1

2
g:

3.2 Main Theorem

Theorem 4 Let % be a binary relation on F . Then, the following conditions
are equivalent:
(1) The preference relation % satis�es the Axioms A1 - A5;
(2) There exists an a¢ ne utility function u : X ! R, and a nonempty,

(weak�) compact, convex set C of �nitely additive probability over �; and a C-
unambiguous (referential) event A 2 � where the pair (u;C) represents % in
the sense that:

f % g , J (f) � J (g) for all f; g 2 F
where,

J (f) = min
p2C

Z
A

u (f) dp+max
p2C

Z
Ac

u (f) dp.
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Moreover, if another pair (u1; C1) also represents % then there exist � > 0
and � 2 R such that u (�) = �u1 (�) + � and C = co (C1).

This representation captures choices situations as those discussed in the
Introduction. First, note that the event A is unambiguous with respect to
C, that is, for all priors p; p; 2 C; the agreement p (A) = p; (A) holds. In
this way, we call the event A as a chance event. In the soccer example, the
commentator might behaves in accordance with this model. The chance event
A is related to European teams and Ac is associated to South American teams,
both events has 50% of occurrence. An important feature is that acts given by
f = xAy; with x; y 2 X, are "unambiguous" in the sense that the commentator
evaluate such acts in a similar way of an expected utility agent. On the other
hand, if an act f is uncertain over A or over Ac the commentator associates
a pessimistic evaluation of this act over A and an optimistic evaluation of this
act over Ac. For instance, the commentator might not be able to associates a
well speci�ed probability to the success of Brazil in the world championship.
Since the commentator is uncertainty averse with respect to A, he associates
the worst expected utility to bet on an European team. This happens because
the commentator does not judge himself competent for this bet. On the other
hand, with respect to the complementary events Ac and its sub-events, the
commentator associates the best plausible expected utility for bet in a south
American team.
In the same way, in the medical example, the reference event is the "general

cause" of illness. Following the Introduction, the set A corresponds to cardiac
illness and the set Ac corresponds to respiratory illness. Due to the frequency
a patient appears with cardiac problems in his clinic, the specialist point out
70% of probability for the illness to be cardiac. Although he can infer about
the nature of the illness through objective probabilities, the illness is uncertain.
Thus, the doctor will give a higher weighting for his success in pointing out
the illness when it is related with respiratory system and will underestimate his
inference with a less weighting to success in case of a cardiac illness.
In the third example, the reference event is the company sector in which

the stockbroker will manage the asset. The stockbroker should to decide who
company his stock brokerage will invest in a set of companies comprised by
commodities �rms and technology �rms. The stockbroker knows that 30% of
the time the better achievement is related to technology companies, his spe-
ciality. Then, A represent the commodity companies and Ac the technology
companies. Although he knows the probability that some technology �rm has
the better achievement, he does not know speci�cally which company will be
the better. Given his specialty, he associates the better feasible expected utility
for bet in a technology �rm, represented in the functional by the component
maxp2C

R
Ac u (f) dp, and the worst feasible expected utility for bet in a com-

modity �rm, represented by the component minp2C
R
A
u (f) dp, because he

considers himself competent for investments in technology �rms and ignorant
about invest in commodity �rms.
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3.3 The Case of Choquet Expected Utility

Our main result characterizes preferences relations % with a multiple priors
representation, where beliefs are modeled by a set of probability measures C �
�, and the reference event A 2 � is a chance event. In this Section we aim to
characterize the special case given by C = core (v), where v is a convex capacity.
In this case, our representation J can be rewrite as

J (f) = min
p2core(v)

Z
A

u (f) dp+ max
p2core(v)

Z
Ac

u (f) dp;

and by Schmeidler (1989),

J (f) =

Z
A

u (f) dv +

Z
Ac

u (f) d�v.

Also, we will see that this representation is also a special case of CEU model as
proposed by Schmeidler.
Wakker (1990) proposed an elegant characterization of optimism and pes-

simism in the CEU model through comonotonicity, without imposing uncer-
tainty aversion as proposed by Schmeidler (1990) and Chateauneuf (1991)7 . In
a similar way, we can impose conditions in order to obtain the CEU represen-
tation discussed above.
Let us provide the fundamental de�nitions for the next result:
Mixture-Independence: We say that the preference relation % satis�es

Mixture-Independence if for all f; g; h 2 F and for all � 2 (0; 1)

f % g , �f + (1� �)h % �g + (1� �)h.

We say that the act f; g 2 F are %-comonotonic if there do not exist states
s; s0 2 S such that

f (s) � f (s0) and g (s0) � g (s) .

Pessimism-Independence: We say that the preference relation % satis-
�es Pessimism-Independence over H � F if for all f; g; h 2 H, with g and h
comonotonic, and for all � 2 (0; 1)

f % g , �f + (1� �)h % �g + (1� �)h.

Optimism-Independence: We say that the preference relation % satis-
�es Optimism-Independence over H � F if for all f; g; h 2 H, with f and h
comonotonic, and for all � 2 (0; 1)

f % g , �f + (1� �)h % �g + (1� �)h.

We refer to Wakker (1990) for a discussion on the meaning of such notions
of independence. Our characterizations follows as:

7See also Wakker (2001).

9



Theorem 5 Let % be a binary relation on F . Then, the following conditions
are equivalent:
(1) The preference relation % satis�es the Axioms A1, A3, A4, A5c, Pessimism-

Independence over FA,and Optimism-Independence over FAc ;
(2) There exists an a¢ ne utility function u : X ! R, and a convex capacity

v over � such that

f % g , J (f) � J (g) for all f; g 2 F

where,

J (f) =

Z
A

u (f) dv +

Z
Ac

u (f) d�v.

Moreover, u is unique up to a positive a¢ ne transformation, and v is uniquely
determined. Furthermore, by considering for all E 2 �;

� (E) := v (E \A)� v (Ec [A) + 1;

we have that

J (f) =

Z
S

u (f) d�.

4 Appendix

Proof of the Main Theorem
Part (1)) (2) is straightfoward except Axiom A5. Part (2)) (1) will result

from Lemma 1 to Lemma 4.
Axiom A5
Part A5a: Suppose fAx � gAx, then we have J (fAx) = J (gAx). i.e.,

min
p2C

Z
A

u (f) dp+ u (x) p (Ac) = min
p2C

Z
A

u (g) dp+ u (x) p (Ac)

min
p2C

Z
S

u (f)1Adp = min
p2C

Z
S

u (g)1Adp:

Since A is unambiguous,

J (�fAx+ (1� �) gAx) = min
p2C

Z
A

(�u (fAx) + (1� �)u (gAx)) dp+ u (x) p (Ac)

= min
p2C

Z
A

(�u (f) + (1� �)u (g)) dp+ u (x) p (Ac) :

Using min (a+ b) � min a+min b, we can write

min
p2C

Z
S

(�u (f)1A + (1� �)u (g)1A) dp+ u (x) p (Ac)

� �min
p2C

Z
A

u (f) dp+ (1� �)min
p2C

Z
A

u (g) dp+ u (x) p (Ac) ;
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so,

J (�fAx+ (1� �) gAx) � �min
p2C

Z
A

u (f) dp+(1� �)min
p2C

Z
A

u (g) dp+u (x) p (Ac)

and,

�min
p2C

Z
A

u (f) dp+ (1� �)min
p2C

Z
A

u (g) dp+ u (x) p (Ac) = min
p2C

Z
A

u (f) dp+ u (x) p (Ac)

= J (fAx) :

i.e.,
J (�fAx+ (1� �) gAx) � J (fAx)

�fAx+ (1� �) gAx % fAx:

Part A5b: Suppose fAcx � gAcx, we have J (fAcx) = J (gAcx). Thereby,

max
p2C

Z
A

u (f) dp+ u (x) p (A) = max
p2C

Z
A

u (g) dp+ u (x) p (A)

max
p2C

Z
S

u (f)1Adp = max
p2C

Z
S

u (g)1Adp:

Since A is unambiguous,

J (�fAcx+ (1� �) gAcx) = max
p2C

Z
Ac

(�u (fAcx) + (1� �)u (gAcx)) dp+ u (x) p (A)

= max
p2C

Z
Ac

(�u (f) + (1� �)u (g)) dp+ u (x) p (A) :

Then, like the proof above, based on max (a+ b) � max a + max b, we can
write,

max
p2C

Z
S

(�u (f)1Ac + (1� �)u (g)1Ac) dp+ u (x) p (A)

� �max
p2C

Z
Ac

u (f) dp+ (1� �)min
p2C

Z
Ac

u (g) dp+ u (x) p (A) ;

so,

J (�fAcx+ (1� �) gAcx) � �max
p2C

Z
Ac

u (f) dp+(1� �)max
p2C

Z
Ac

u (g) dp+u (x) p (A)

and,

�max
p2C

Z
Ac

u (f) dp+ (1� �)max
p2C

Z
Ac

u (g) dp+ u (x) p (A) = max
p2C

Z
Ac

u (f) dp+ u (x) p (A)

= J (fAcx) :

11



i.e.,
J (�fAcx+ (1� �) gAcx) � J (fAcx)

�fAcx+ (1� �) gAcx - fAcx:
Part A5c: Since 0 2 u (X), there exists �x 2 X such that u (�x) = 0.
Now, given f 2 F and x; y 2 X such that x � fA�x and y � �xAf .
Because J represents %, we obtain,

u (x) = min
p2C

Z
A

u (f) dp+ u (�x) p (Ac)

= min
p2C

Z
A

u (f) dp and

u (y) = max
p2C

Z
Ac

u (f) dp+ u (�x) p (A)

= max
p2C

Z
Ac

u (f) dp:

Thus,

J

�
1

2
x+

1

2
y

�
=

1

2
u (x) +

1

2
u (y)

=
1

2
min
p2C

Z
A

u (f) dp+
1

2
max
p2C

Z
Ac

u (f) dp

= min
p2C

Z
A

�
1

2
u (fA�x) +

1

2
u (�xAf)

�
dp+max

p2C

Z
Ac

�
1

2
u (fA�x) +

1

2
u (�xAf)

�
dp

= J

�
1

2
fA�x+

1

2
�xAf

�
;

then,
1

2
x+

1

2
y � 1

2
fA�x+

1

2
�xAf:

Note that for all s 2 S,

1

2
f (s)A�x+

1

2
�xAf (s) =

�
1
2f (s) +

1
2 �x; S 2 A

1
2 �x+

1
2f (s) S 2 Ac

i.e.,
1

2
fA�x+

1

2
�xAf =

1

2
f +

1

2
�x:

hence,
1

2
x+

1

2
y � 1

2
f +

1

2
�x:

Part (2) implies (1):

12



Given %� F � F satisfying A1 - A5, we need to �nd a representation J :
F ! R for %, i.e.,

f % g , J (f) � J (g)

By A1, A2 and A3, the preference % jX�X restricted to consequences, sat-
is�es the well known conditions for the existence of a a¢ ne and nonconstant
function

u : X ! R

such that, for all x; y 2 X,

x % y () u (x) � u (y) :

Moreover, we can assume that 0 2 int (u (x)).
We note that for all f 2 F ; there exists xf 2 X such that f � xf . Now,

let J : F ! R and for each f 2 F , J (f) := u (xf ), where xf is the certainty
equivalent of f . Also, B0 (S;�; u (X)) = fu (f) : f 2 Fg8 .
The functional J de�ned over F by J (f) := u (xf ) allows us to de�ne

I : B0 (u (X))! R, and if a = u (f), then I (a) = J (f).
Note that, I is well de�ned over B0 (u (X)): given a a such that a = u (f)

and a = u (g), therefore u (f (s)) = u (f (s)), for all s 2 S. By the monotonicity
axiom, f (s) � g (s) for all S implies f � g. Thus, xf � xg, which leads to
J (f) = J (g).

Lemma 6 Let I be the functional over 0 (u (X)) induced from J representing
%. Then I can be extended to B0 (�), and it satis�es:
I.1. I is normalized, i.e., for all k 2 u (x),

I (k1s) = k:

I.2. I is monotonic:

a � b =) I (a) � I (b) :

I.3. I is constant additive: For all a 2 B0 (u (X)) and for all k such that
a+ k1s 2 B0 (u (X)).I (a+ k) = I (a) + k:
I.4 I is positively homogeneous, i.e., for all k > 0,I (ka) = kI (a) :
I.5 There exists A 2 � such that, for all a; b 2 B0 (u (X)):
I.5a I (aA0 + bA0) � I (aA0) + I (bA0) ;
I.5b I (0Aa+ 0Ab) � I (0Aa) + I (0Ab) ;
I.5c I (a) = I (aA0) + I (0Aa) :

Proof:
I.1 Let k 2 u (X), then exists some x 2 X such that k = u (x) and I (k1s) =

I (u (x)1s) = u (x) = k.
I.2 If a = u (f) and b = u (g) 2 B0 (u (X)) and a � b, then u (f (s)) �

u (g (s)) for all s 2 S. Thereby, by monotonicity we have f % g, i.e., J (f) �
8See, for instance, Macheronni, Marinacci and Rusticinni (2006, p. 1478).
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J (g). This leads to the relation I (a) = I (u (f)) = J (f) � J (g) = I (u (g)) =
I (b).
I.3 By homogeneity, we can assume, without loss of generality, that 2a and

2k1s 2 B0 (u (X)). Let � = I (2a) = 2I (a) and u (f) = 2a for all f 2 F , taking
y; z 2 X where u (y) = �1s and u (z) = 2k1s. If f � y, by axiom A5c, we have,

1

2
f +

1

2
z � 1

2
y +

1

2
z:

Therefore,

I (a+ k1s) = I (�1s + k1s) =
1

2
� + k = I (a) + k

thus, I is additive constant.
I.4 Let a = �b where a; b 2 B0 (u (X)) and � 2 [0; 1]. Let g 2 F satisfying

u (g) = b and de�nes f = �g + (1� �) z, with z 2 X and u (z) = 0. Then
u (f) = �u (g) + (1� �)u (z) = �b = a, and I (a) = J (f). By A5c axiom,
axg + (1� �) z � �g (1� �) z = f , we have,

J (f) = J (axg + (1� �) z)
= �J (xg) + (1� �) J (z)
= �J (xg) :

Then, we can write,

I (�b) = I (a) = J (f) = �J (xg) = �I (b) :

I.5a Let a; b 2 B0 (u (X)). It is enough to show that

I

�
1

2
aA0 +

1

2
bA0

�
� 1

2
I (aA0) +

1

2
I (bA0) :

Given f; g 2 F such that u (fA�x) = aA0 and u (gA�x) = bA0. If I (aA0) =
I (bA0), by uncertainty aversion over FA9 , we obtain that

I

�
1

2
aA0 +

1

2
bA0

�
� I (aA0) = 1

2
I (aA0) +

1

2
I (bA0) :

Now, in the case of I (aA0) > I (bA0), let k = I (aA0) � I (bA0). We
de�ne c = bA0 + k1s, thus through the certainty independence axiom, we have
I (c) = I (bA0) + k = I (aA0). Applying the later axiom again and uncertainty
axiom, we get

I

�
1

2
aA0 +

1

2
bA0

�
+
1

2
k = I

�
1

2
aA0 +

1

2
c

�
� 1

2
I (aA0) +

1

2
I (c) =

1

2
I (bA0) +

1

2
k

I

�
1

2
aA0 +

1

2
bA0

�
� 1

2
I (aA0) +

1

2
I (bA0) :

9 In this case, 1
2
fA�x+ 1

2
gA�x % fA�x.
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I.5b Let a; b 2 B0 (u (X)). It is enough to show that,

I

�
1

2
0Aa+

1

2
0Ab

�
� 1

2
I (0Aa) +

1

2
I (0Ab)

Given f; g 2 F such that u (�xAf) = 0Aa and u (�xAg) = 0Ab. If I (0Aa) =
I (0Ab), by uncertainty seeking over FAc

10 , we obtain

I

�
1

2
0Aa+

1

2
bA0

�
� I (0Aa) = 1

2
I (0Aa) +

1

2
I (bA0) :

Now, if I (0Aa) > I (0Ab), let k = I (0Aa) � I (0Ab). We de�ne c = 0Ab +
k1s, in which , by certainty independence, we have I (c) = I (0Ab)+k = I (0Aa).
Again, by certainty independence, and uncertainty seeking we get

I

�
1

2
0Aa+

1

2
0Ab

�
+
1

2
k = I

�
1

2
0Aa+

1

2
c

�
� 1

2
I (0Aa) +

1

2
I (c) =

1

2
I (0Ab) +

1

2
k

I

�
1

2
0Aa+

1

2
0Ab

�
� 1

2
I (0Aa) +

1

2
I (0Ab) :

I.5c We need show that I (a) = I (aA0) + I (0Aa).
Let a 2 B0 (u (X)) where a = u (f). Additionally, a can be written as,

a = u (�f + (1� �) �x) : (1)

According to relation 1, we get

I (a) = J (u (�f + (1� �) �x))

= J

�
u

�
1

2
f +

1

2
�x

��
= J

�
1

2
xfA�x +

1

2
x�xAf

�
=

1

2
u (xfA�x) +

1

2
u (x�xAf )

=
1

2
J (fA�x) +

1

2
J (�xAf)

=
1

2
I (aA0) +

1

2
I (aA0) :

Gilboa & Schmeidler (1989) showed that11 there exists a unique and continu-
ous extension of I to the whole B (S;�) when I is monotonic, constant additive
and positively homogeneous. Furthermore, this extension satis�es properties
I.1 - I.5. as in our previous lemma. Recall that, given a set of probabilities
C � �, an event A is called a chance event if A is unambiguous w.r.t. C
(8p; q 2 C; p (A) = q (A)).
10 In this case, 1

2
�xAf + 1

2
�xAg - �xAf .

11For details about this extension and their proof, see their Lemma 3.4, p.147.
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Proposition 7 The functional I : B (S;�)! R satis�es I.1 - I.5, if, and only
if, there exists a set C � � closed (weak*), convex, nonempty and a chance
event A 2 �, such that,

I (a) = min
p2C

Z
A

a dp+max
p2C

Z
Ac

a dp:

Proof:
Before to applying the classical results of MEU to our functional, we need

to describe the dual of BA and BAc .
For a given event A, note that the induced collection of events

�A := fE 2 � : E � A or E \Ac = Acg

is a �-algebra.

Lemma 8 �A is a ��algebra.

Proof: We need to check the following properties:

1. ;; S 2 �A;

2. If E 2 �A, then Ec 2 �A.

3. Given (En)n2N and En 2 �A, then
1[
n=1

En 2 �A:

Clearly, ;; S 2 �A because ; � A and S \ Ac = Ac. Now, given E 2 �A,
clearly E � A or E \ Ac = Ac. In the case where E � A then Ec \ Ac = Ac.
In fact, Ec \Ac � Ac and if s 2 Ac, then since E � A we can say that s 2 Ec,
which leads to s 2 Ec \Ac, i.e., Ac � Ec \Ac, or, Ec \Ac = Ac.
Now, if E \ Ac = Ac, given s 2 Ec, then s =2 Ac; because otherwise, we can

write that s =2 E \Ac and s 2 Ac, which contradicts E \Ac = Ac.
Thus, for all s 2 Ec, we have s 2 A, i.e., Ec � A. This satis�es the second

condition.
In order to prove the third condition, we only need to check if for all n 2 N,

En � A, then
1[
n=1

En � A.

Suppose there exists n 2 N such that En 6� A, i.e., En \Ac 6= ;.
We just need to show that,

1[
n=1

En \Ac = Ac.

In fact, the following relation can be written,

1[
n=1

En =

0@ 1[
n:En�A

En

1A [
0@ 1[
n:En 6�A

En

1A
16



then,  1[
n=1

En

!
\Ac =

240@ 1[
n:En�A

En

1A [
0@ 1[
n:En 6�A

En

1A35 \Ac
=

24 1[
n:En�A

En \Ac
35 [

24 1[
n:En 6�A

En \Ac
35 :

Since
1[

n:En�A
En \Ac = ;, we have,

 1[
n=1

En

!
\Ac =

24 1[
n:En 6�A

En \Ac
35 =[Ac = Ac:

This shows that the third condition is also satis�ed. Therefore, �A is a
��algebra.
Consider the Banach spaces B (S;�A), B (S;�Ac) and de�ne

BA (S;�) := fa 2 B (S;�) : a is constant in Acg :

An very important result for our construction follows as:

Lemma 9 BA (S;�) = B (S;�A).

Proof: First, we need to prove that any element in BA (S;�) also belongs to
B (S;�A).
Let b 2 BA (S;�), i.e., there exists a 2 B (S;�) and k 2 R such that

b = aAk.
Clearly, b is limited, because a is also bounded and k 2 R.
Now, we need to show that aAk is �A�measurable, i.e., for all r 2 R, the

set a�1 ((r;+1)) 2 �A. By contradiction, if there is a real number r0 such
that a�1 ((r;+1)) 62 �A, then a�1 ((r;+1)) 6� A or a�1 ((r;+1)) \ Ac  
Ac. That is, a�1 ((r;+1)) \ Ac 6= ; and a�1 ((r;+1)) \ Ac  Ac. So, ; 6=
fs 2 Ac : a (s) > r0g  Ac. Then, there exists ŝ 2 Ac such that a (ŝ) > r0,
because a�1 ((r;+1))\Ac 6= ;. On the other hand, since a�1 ((r;+1))\Ac 6=
Ac, there exists ~s 2 Ac such that a (~s) � r0. Thus, we conclude that a is not a
constant function in Ac which is a contradiction. Hence, BA (S;�) � B (S;�A).
For the converse, consider an arbitrary function a 2 B (S;�A). We need to

show that a is a constant function in Ac. Suppose the contrary, i.e., there exist
~r; r̂ 2 R and ~s; ŝ 2 Ac such that,

a (~s) = ~r > a (ŝ) = r̂:

We have fs 2 S : a (s) > r̂g 2 �A, and ŝ =2 fs 2 S : a (s) > r̂g which leads
the following relation:

fs 2 S : a (s) > r̂g \Ac 6= Ac:
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It is a contradiction, because,

fs 2 S : a (s) > r̂g 2 �A and �:

Then, a (Ac) = fkg, with k 2 R. Also, a = bAk for some b 2 B (S;�) and a
is ��measurable because a 2 B (S;�A) � B (S;�) and A 2 �. This shows the
sets BA (S;�) e B (S;�A) are the same.
Finally, it is obvious that BA (S;�) = B (S;�A) � B (S;�). Thus, we

have I1 : B (S;�A) ! R and I2 : B (S;�Ac) ! R with the properties already
discussed. Furthermore,

BA (S;�)
�
= B (S;�A)

�
= ba (S;�A) ;

BAc (S;�)
�
= B (S;�Ac)

�
= ba (S;�Ac) :

Then I1 : B (S;�A) ! R satis�es the conditions of the main Lemma in
Gilboa & Schmeidler (1989) and, therefore, there exists a nonempty, closed and
convex set C1 � ba1 (S;�A) such that for all a 2 B (S;�A)12

I1 (a) = min
p2C1

Z
S

a dp:

Similarly, for I2 : B (S;�Ac)! R, we use the subadditive version in Gilboa
and Schmeidler (1989), i.e., there exists a nonempty, closed and convex set
C2 � ba1 (S;�Ac) such that for all b 2 B (S;�Ac),

I2 (b) = max
p2C2

Z
S

b dp:

We note that given a function a 2 B (S;�), we have that aA0 2 B (S;�A)
and 0Aa 2 B (S;�Ac). Therefore,

I1 (aA0) + I2 (0Aa) = min
p2C1

Z
A

a dp+ max
p2C2

Z
Ac

a dp:

Now, by I5c,

I (a) = I (aA0) + I (0Aa) = I1 (aA0) + I2 (0Aa) = min
p2C1

Z
A

a dp+max
p2C2

Z
Ac

a dp:

So, we have proved that given for any function a 2 B (S;�), follows that

I (a) = min
p2C1

Z
A

a dp+ max
p2C2

Z
Ac

a dp

where C1 � ba1 (S;�A) =: �A and C2 � ba1 (S;�Ac) =: �Ac .

12Given a ��algebra ~� over S, ba1
�
S; ~�

�
denotes the family of all probability measures

over ~�.
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Now, we need to �nd a nonempty, closed and convex set of probabilities
C � ba (S;�) such that,

I (a) = min
p2C

Z
A

a dp+max
p2C

Z
Ac

a dp:

Lemma 10 For all A 2 �,

�B \ �Bc = f;; S;B;Bcg :

Proof: The intersection of the set �B with its complementary �Bc , can be
written as,

�B \ �Bc = fE 2 � : [E � B or E \Bc = Bc] and [E � Bc or E \B = B]g :

We note that,

�B \�Bc =
fE 2 � : [E � B and E � Bc] or [E � B and E \B = B] or
[E � Bc and E \Bc = Bc] or [E \Bc = Bc and E \B = B]g:

Thus, if E 2 � is such that [E � B and E � Bc], clearly E = ;. If E 2 �
is such that [E � B and E \B = B], then E = B. If E 2 � is such that
[E � Bc and E \Bc = Bc], E = Bc. And, �nally, if E 2 � is such that
[E \Bc = Bc and E \B = B], then E = S. This prove that �B \ �Bc =
f;; S;B;Bcg.
From the proposition above, we note that I1 and I2 overB (S;�A)\B (S;�Ac)

are the same. Then, we have,

I1 (1A0) = I2 (1A0)

I1 (0A1) = I2 (0A1) :

Consequently,

min
p2C1

p (A) = max
q2C2

q (A) , and

min
p2C1

p (Ac) = max
q2C2

q (Ac) , i.e.,

max
p2C1

p (A) = min
q2C2

q (A) :

Therefore,minp2C1 p (A) � maxp2C1 p (A) = minq2C2 q (A) � maxq2C2 q (A) =
minp2C1 p (A), which shows the desirable equality.
Thus, A is unambiguous with respect to C1 and unambiguous with respect

to C2. Hence, there exists r 2 R such that,�
8p; p0 2 C1, p (A) = p0 (A) = r and
8q; q0 2 C1, q (A) = q0 (A) = r.
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Now, de�ning the set

C = fp 2 � : 9p1 2 C1; 9p2 2 C2 such that pj�A = p1 and pj�Ac = p2g :

For E 2 �A \ �Ac , E is also unambiguous with respect to C.
Note that C is convex. In fact, for p; q 2 C, there exists p1; q1 2 C1 and

exists p2; q2 2 C2 such that pj�A = p1, pj�Ac = p2, qj�A = q1, and qj�Ac = q2.
Hence, �p+(1� �) q, with � [0; 1], is such that [�p+ (1� �) q] j�A = [�p1 + (1� �) q1] 2

C1 because C1 is convex.
Similarly, [�p+ (1� �) q] j�Ac = [�p2 + (1� �) q2] 2 C2 because C2 is con-

vex. Then C is convex. Also, C 6= ;: Given an arbitrary pair of probabilities
p1 2 C1 and p2 2 C2, and we can take p over � by where pj�A = p1 and
pj�Ac = p2.
Remains to show that C is a closed set (weak�).
Given a net fp�g such that p� 2 C; for all � and p� �

* p is necessary shows

that p 2 C. We have p� �
* p

(def.)() 8a 2 B (S;�),Z
a dp� !

Z
a dp:

Since p� 2 C; for all �, then given �, there exist p�1 2 C1 and p�2 2 C2 such
that p�j�A = p�1 and p�j�Ac = p�2 . Therefore, for all a 2 B (S;�A) � B (S;�),Z

a dp� !
Z
a dp:

So, Z
A

a dp� !
Z
A

a dp

and, Z
A

a dp�1 !
Z
A

a dpj�A ;

i.e., p�1
�
* pj�A , since C1 is closed, pj�A 2 C1.

Analogously, for all a 2 B (S;�Ac)Z
a dp� !

Z
a dp;

notably, Z
A

a dp� !
Z
A

a dp:

In other words, Z
A

a dp� !
Z
A

a dpj�Ac ;

i.e., p�2
�
* pj�Ac . Since C2 is closed pj�Ac 2 C2.
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In short, p� �
* p with pj�A 2 C1 and pj�Ac 2 C2, i.e., p 2 C, which shows

that C is closed (weak�).
Now, note that for a function a 2 B0 (S;�A), a =

PN
i=1 �i1Ei + k1Ac where

�i 2 R and Ei 2 �A we have (Ei)Ni�1 is a partition of A.
Then, for all p1 2 C1,Z

a dp1 =
NX
i�1

�ip1 (E1) + kp1 (A
c)

and for all p 2 C there is a correspondent p1 2 C1 with pj�A = p1. We can
write, Z

a dp1 =
NX
i=1

�ip (E1) + kp (A
c) =

Z
a dp:

Thus, minp12C1
R
a dp1 = minp2C

R
a dp. If a =2 B0 (S;�A), we can take a

sequence (an)n2N � B0 such that an
k�k1! a.

Hence, given p 2 C there exists p1 2 C1 such that pj�A = p1 and,Z
a dp = lim

n!1

Z
an dp = lim

n!1

Z
an dp1 =

Z
a dp1:

The procedure is similar for a 2 B (S;�Ac). Then we obtain that

I (a) = min
p2C

Z
A

a dp+max
p2C

Z
Ac

a dp;

which concludes the proof of our main result.
Proof of Theorem 5:
The proof of "if, and only if" follows from a combination of our Main The-

orem with Lemma 7 and Corollary 8 (page 460) in Wakker (1990). Note that
our condition A5c plays the same rule as in the proof of our Main Theorem.
For the equality

J (f) =

Z
S

u (f) d�;

note that it is enough to show that

I (a) =

Z
S

a d�;

for any function a � 0 because a�mins a (s) � 0 and constant additivity holds.
Note that, from the de�nition of Choquet integral and that for all E 2 �;

� (E) := v (E \A)� v (Ec [A) + 1;
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we haveZ
S

a d� =

Z 1

0

� (fs 2 S : a (s) � tg) dt =

=

Z 1

0

[v (fs 2 A : a (s) � tg)� v (fs 2 S : a (s) < tg [A) + 1] dt =

=

Z 1

0

fv (fs 2 A : a (s) � tg) + [1� v (fs 2 Ac : a (s) � tgc)]g dt = (�) :

Also, note that both
R1
0
v (fs 2 A : a (s) � tg) dt and

R1
0
v (fs 2 Ac : a (s) � tg) dt

are �nite, and thenZ
S

a d� = (�) =

Z 1

0

v (fs 2 A : a (s) � tg) dt+
Z 1

0

v (fs 2 Ac : a (s) � tg) dt =

=

Z
A

adv +

Z
Ac

adv.
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