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Abstract

This paper proposes an equilibrium theory of the organization of

work in an economy with an implicit market for productive time. In

this market, agents buy or sell productive time. This implicit mar-

ket gives rise to the formation of teams, organized in hierarchies with
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one leader (buyer) at the top and helpers (sellers) below. Relative to

autarky, hierarchical organization leads to higher within and between

team payo¤s/productivity inequality. This prediction is tested empir-

ically in the context of professional road cycling. We show that the

observed rise in performance inequality in the peloton since the 1970s

is merely due to a rise in help intensity within team and consistent

with a change in the hierarchical organization of teams.

JEL Classi�cation: D2, D3 and L22.

Keywords: Hierarchical organization, productive time, helping time,

inequality, professional cycling.
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1 Introduction

Many economies have witnessed a rising wage inequality in the last 5 decades

(Acemoglu and Autor, 2010 and Acemoglu, 2003) alongside with large changes

in many �rms� organizational structure (see e.g. Rajan and Wulf, 2006).

Early theoretical models developed by Lucas (1978) and Rosen (1982) ex-

hibit that earnings inequality raises with span of control. This prediction

has recently been tested empirically in a few studies. Fox (2009) shows that

earnings inequality increases with job responsibility in Swedish and US �rms,

and Gabaix and Landier (2008), Garicano and Hubbard (2009) and Tervio

(2008) conclude that the recent increase in earnings inequality in large US

�rms and in law �rms is largely due to the rise in span of control in these

�rms.

This paper proposes an alternative channel through which hierarchical

organization and earnings inequality might be related, namely help intensity.

This paper studies an economy with an implicit market for productive time.

The scarce resource in this market is the time each agent can dedicate to

production. Agents can dedicate their productive time to their own produc-

tion (autarky), buy (part of the) productive time from helpers and herewith

increase their own production, or sell (part of) their productive time to a
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leader, hence giving up own production. Since helping time of better helpers

is more e¢ cient, the hedonic equilibrium price for productive time compen-

sates i) forgone own production and ii) helping ability. This implicit market

for productive time gives rise to teams�formation. These teams have a hi-

erarchical organization with a leader at the top producing output with the

help of helpers below.

There are many examples of goods and services produced with teams

organized that way. We may think for instance of a lawsuit: The defence of a

case is performed by a leading lawyer who receives full credit for the outcome

of the trial. The leading lawyer however might receive help from other lawyers

at her �rm to prepare the trial. The opportunity cost of spending productive

time helping the leading lawyer requires a compensating wage. Yet, other

examples can be found in architect o¢ ces, maisons de Haute Couture, music

bands and many more... Interestingly enough, certain sports, in particular

professional road cycling, show a similar organization of teams but present

the advantage of having the size of teams �xed exogenously. These economies

allow us to abstract from the extensive margin and focus on the core: the

relationship between helping time and performance inequality.

The existence of an implicit market for productive time raises many in-
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teresting questions about the structure of such an economy. For instance,

who becomes a leader and who becomes a helper? Are leaders more able

than helpers? Are more able helpers assigned to more able leaders? How

does the distribution of payo¤s look like? Is there more inequality in payo¤s

with hierarchical organization than with autarky?

In this paper, we elaborate a core theoretical model using stylized fea-

tures of professional road cycling. In this core model, the distribution of roles

(leaders, helpers and self-production), the assignment of leaders to helpers,

and the distribution of payo¤s (the hedonic price for productive time) are en-

dogenously determined. We show that under mild conditions, an equilibrium

in this economy exists and is Pareto optimal. The equilibrium assignment is

so that i) within teams the better rider becomes the leader, ii) better helpers

are matched with better leaders and iii) some form of strati�cation arises:

more able agents either become leaders or helpers and less able agents either

become helpers or ride individually. The model can be used to study the link

between hierarchical organization and productivity and/or payo¤s inequal-

ity. For instance, we show that relative to autarky, hierarchical organization

leads to greater payo¤s/performance inequality.

The core model developed in this paper is most closely related to the
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one-sided assignment1 models studied by Lucas (1978), Rosen (1982), Gar-

icano and Rossi-Hansberg (2004;2006) and Garicano and Hubbard (2005).

However, in contrast with our model, in these models, output is produced by

agents at the bottom of the hierarchy helped by managers at the top of the

hierarchy. In the economy studied by Garicano and Rossi-Hansberg (2006)

for instance, hierarchical organization arises as an e¢ cient way of sharing

knowledge. In contrast with our model, the implicit market is therein a mar-

ket for knowledge, not productive time. Agents can buy knowledge either

directly by learning, which is costly, or indirectly by �hiring�more knowl-

edgeable agents to solve problems they cannot solve themselves. In these

hierarchical organizations, output is produced by workers helped by more

knowledgeable agents called managers.

In Garicano and Rossi-Hansberg (2006), as in Lucas (1978) and Rosen

(1982),2 a strict strati�cation arises with production workers at the bottom of

1This contrasts with two-sided assignment models studied in Tinbergen (1956), Becker
(1973), Rosen (1974) and Sattinger (1993) among others where agents on one side of the
market (workers, women, sellers) meet agents on the other side of the market (�rms, men,
buyers). These models have been used in the recent literature on CEO pay by e.g. Gabaix
and Landier (2008) and Tervio (2008). More recently, Edmans, Gabaix and Landier
(2009) embedded a moral hazard problem into a talent two-sided assignment model to
study CEO-pay incentives.

2Rosen (1982) recognizes that if the rents function is su¢ ciently convex then the model
predicts that both the least and most able agents become managers. Rosen (1982) classi�es
this case as a �pathology�of the model since it implies that some managers are less able
than their workers.
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the distribution of ability, self-employed in the middle and managers (helpers)

at the top. Our model allows for a more general form of strati�cation in

equilibrium: while leaders are more able than self-employed, some helpers

may be more able than some leaders (of di¤erent helpers). Similarly, self-

employed agents could be less or more able than helpers depending on the

primitives of the model.

This paper also relates to the literature on the Monge-Kantorovich trans-

portation problem (see e.g. Villani, 2009). Recently, Chiappori, McCann

and Nesheim (2010) have shown equivalence results between two-sided quasi-

linear hedonic models and the Monge-Kantorovich optimal transportation

problem. We use existence and duality results from the Monge-Kantorovich

transportation literature (Villani, 2009) to study the properties of the one-

sided hedonic economy presented in this paper. In particular, we build on

Chiappori, Galichon and Salanie (2011) that show how a one-sided assign-

ment model can be re-formulated as a two-sided assignment model with sym-

metric surplus, to prove that a competitive equilibrium in our model is Pareto

optimal.

Anticipating on our empirical results, we show that, since the 1970s, the

help intensity within teams has increased sharply in the peloton of the Tour
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de France, an increase that is related to changes in the incentives to organize

hierarchically within teams. In turns, we show that the observed rise in

performance inequality in the peloton since the 1970s is merely due to this

increase in help intensity.

The remainder of the paper is organized as follows. Section 2 proposes a

theoretical model that introduces hierarchical organization arising from the

existence of an implicit market for productive time. Section 3 studies the

example of professional road cycling and in particular the Tour de France.

Section 4 concludes.

2 Theoretical model

2.1 Set up

We present the model using the analogy to the Tour de France but one could

also consider any of the previous examples (lawsuit, haute couture, rock

band,...). In these cases, one can replace �riders� by �agents� throughout

this section.

Let riders be endowed with one unit of time and with ability z, z 2 Z
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where Z = [z; z] with 0 < z � z < 1.3 Let � be the probability measure

representing the distribution of riders�ability on Z. We assume that ability

is measured in terms of velocity (kilometers per hour) that is, z is the total

distance of the Tour divided by the time it would take rider z to cover this

distance when riding individually.

In this economy, riders decide either to ride individually or coordinate

their e¤orts within teams. The number of riders in a team is �xed exoge-

nously by rules and for the sake of simplicity we assume it is equal to 2.4

Within each team, one rider becomes the helper of the other. The two riders

must decide who becomes the leader and who becomes the helper. The dis-

tribution of roles within teams is endogenous to the model. Conditions under

which the most able rider becomes the leader are given below in Proposition

3.

In case riders decide to coordinate their e¤orts, the helper will devote

s 2 [0; 1] unit of time to her leader. Let vh(zh; s) = zh� sazh be the velocity

of a helper of ability zh when providing helping time s to her leader. The

3We could work with unbounded support for z without changing much of the model
but this would require to write down boundary conditions for the functions f and v in our
standing assumptions below.

4This assumption restricts the extensive margin compared to Garicano and Rossi-
Hansberg (2006) who study leverage in a knowledge economy. However, this does not
seem to be restrictive in our case since the number of riders in each team participating in
the Tour is �xed to 9 by rules.
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parameter a de�nes a lower bound for the helpers velocity: a full-time helper

has velocity zh(1� a).5 The term azh indicates the helper�s velocity loss by

unit of helping time provided to her leader.6 It seems natural that this loss

will depend on the ability of the helper since, by symmetry, azh can also be

interpreted as the helper�s velocity gain by unit of time spent helping himself.

The helper�s forgone velocity requires a compensation from her leader, say

wh(zh; s). This compensation depends on s and zh since the forgone velocity

depends on helping time provided s and helper�s ability zh.

Similarly, let the velocity of a leader with ability zl helped by a helper of

ability zh providing helping time s be vl(zl; s) = zl+f(zh)s with (zl; zh) 2 Z2,

where f(zh) is a twice di¤erentiable continuous function. The function f(zh)

indicates a leader�s velocity gain by unit of helping time provided by a helper

of ability zh.7 This velocity gain generates higher outcome that are (partly)

5For a = 1, vh(zh; 1) = 0. This is unrealistic since during the Tour, riders that do
not �nish within a certain interval of time after the stage winner are disquali�ed, i.e.
vi(zi; s) > vmin where vmin is the velocity below which riders are disquali�ed. This rule
is either a constraint on a or a constraint on the helping time riders can provide. In the
remaining of the paper, we assume for simplicity that a is low enough, a < 1, so that
vh(zh; 1) > vmin.

6Note that all that matters in this economy is the relative shape of the loss of helpers�
velocity to the gain in leaders�velocity. Assuming a linear shape for the loss in helpers�
velocity, i.e. az, is without loss of generality since the properties of the gain in leaders�
velocity, i.e. the function f() below are de�ned relative to a.

7Note that the properties of the economy presented in the propositions below continue
to hold if we allow f to depend on the leader�s ability as long as the following restrictions
are satis�ed: i) @f(x;y)

@x � 0, ii) @2f(x;y)
@x@y � 0 and iii) f(x; y) � ay � f(y; x) � ax for all
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used to compensate the helper. Note that if s = 0, even though riders are in

the same team, both riders bike individually and their respective velocity is

simply vl(zl; 0) = zl and vh(zh; 0) = zh.

Throughout this paper we maintain the following assumptions about the

e¢ ciency of helping time.

Condition 1 Standing Assumptions I (SA I, hereafter)

1. Helping time is strictly e¢ cient for the leader�s velocity, f(y) > 0 for

all y 2 Z but strictly costly for the helper�s velocity, 1 > a > 0,

2. Better riders are also better helpers, f 0(y) > 0 for all y 2 Z.

3. Ine¢ ciency of helping someone else increases with ability, f(y)� ay �

f(x)� ax, for all (x; y) 2 Z2 with x > y.8

Assumption SA I.3 has a strong intuitive interpretation. Remember that

az can be interpreted as rider z�s velocity gain by unit of time spent helping

x � y. In words: i) requires that better leaders make better use of their helper�s time and
ability, ii) the ability of leaders and helpers are complementary and iii) the ine¢ ciency
of helping someone else than oneself increases with ability. For the sake of expositional
simplicity, we present in this paper the special case where f(x; y) = f(y). Proofs of the
propositions in the general case are available upon request from the authors.

8Note that writing x = y + h, after some rewritting, the constraint becomes
f(y+h)�f(y)

h � a. This must hold for all h > 0 and all y 2 Z. Hence, by de�nition,

we have limh!0
f(y+h)�f(y)

h = f 0(y) � a for all y 2 Z.
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herself. Similarly, f(z) is the velocity gain by unit of time generated by a

rider of ability z when helping someone else. The di¤erence f(z) � az is

therefore interpreted as the ine¢ ciency, in velocity units, of helping someone

else than oneself. Assumption SA I.3 requires that this ine¢ ciency increases

with the ability of riders. Stated otherwise, Assumption SA I.3 implies that

it becomes increasingly di¢ cult to communicate the subtleties of the activity

with someone else.9

We assume that the demand for performance is exogenous to the model

so that velocity is priced exogenously in the market. Let p(v) be a continuous

and twice di¤erentiable function mapping rider�s velocity v into money prizes.

Throughout this paper we maintain the following assumptions about the

reward function.

Condition 2 Standing Assumptions II (SA II, hereafter))

1. p(0) = 0,

9To our knowledge, there is no evidence either theoretical or empirical about the shape
of this e¢ ciency. However, a link exists with the psychology literature on the e¤ect of
multitasking on productivity. �One may indeed think of helping someone else as mul-
titasking since it requires, in addition to the action of helping (thinking about how to
increase productivity), interacting and communicating with someone else.� In particular,
Rubinstein, Meyer and Evans (2001) show that agents lose time when they have to switch
from one task to another and that these "time costs" increase with the complexity of the
task. We thank Patricia Crifo for pointing out this literature.

12



2. Rewards p(:) are strictly increasing in velocity p0(z) > 0,

3. Rewards p(:) are convex in velocity, i.e. p
00
(z) � 0 for all z 2 Z,

4. 0 < p0(z) <1 for all 0 < z <1.

Note that the assumption of convexity of the reward function is more

than supported by empirical data on the distribution of prizes by rank in the

�nal classi�cation, see Figure 1.

Let Y , the surplus of a team, be given by the sum of all prizes won

by its riders. Formally, let Y (zl; zh; s) = p(zl + f(zh)s) + p(zh(1 � as)).10

Let wh(zh; s) be the payo¤s of a helper zh providing helping time s and

let wl(zl; s) be the payo¤s of a leader zl enjoying s helping time from her

helper. Without managers, total surplus is split among the riders so that

Y (zl; zh; s) = wh(zh; s) + wl(zl; s).

2.2 Feasible teams

Some general results about feasible teams are helpful to characterize the

equilibrium of this model. First, it can be shown that Proposition 3 is true

under SA I and SA II.

10It is interesting to note that the ability of riders are complementary in surplus if and
only if they help each other, i.e. @2Y

@zh@zl
= p

00
f 0s > 0 if and only if helping time s > 0.
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Proposition 3 Under SA I and SA II, the surplus of all feasible teams

(zl; zh) 2 Z2, with zl � zh, is maximized when zl, i.e. the most able rider,

becomes the leader and zh, i.e. the least able rider, becomes the helper.

Proof. See Appendix B

The intuition is the following. From SA I.3, ay � f(y) � ax � f(x) for

x > y. This means that the net gain of velocity in a team hy; xi is larger

if the best rider is re-assigned from being the helper to being the leader.

Hence, as long as rewards are convex as stated in SA II.3, a team�s surplus is

greater when the less able rider helps the most able one. Denoting (zl; zh)

the measure connecting helpers to leaders in equilibrium, from Proposition

3 we already know that d(zl; zh) = 0 for zl < zh.

Another interesting pattern of the model is the strategy within teams.

How much help intensity to ask/o¤er? To answer this question, �rst note

that, within teams, riders will always choose s so as to maximize their team�s

surplus, i.e. s�(zl; zh) = argmaxs Y (zl; zh; s).11 The arguments of s� will be

dropped when unambiguous.

11Indeed, suppose that both riders choose s0 6= s�(zl; zh) and that the helper receives
payo¤s w0h and the leader payo¤s w

0
l = Y (zl; zh; s

0)�w0h. Since by de�nition Y (zl; zh; s0) �
Y (zl; zh; s

�(zl; zh)), both riders could increase their team�s surplus by setting s = s�(zl; zh).
Splitting the additional surplus Y (zl; zh; s�(zl; zh))�Y (zl; zh; s0) among them will increase
both riders�payo¤s. For all feasible teams, we therefore always have s = s�(zl; zh).
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Under our standing assumptions, the following proposition shows that

the decision about how much helping time to provide simpli�es considerably

for all feasible teams.

Proposition 4 Under SA I and SA II, for all feasible teams (zl; zh) 2 Z2,

with zl � zh, surplus Y (zl; zh; s) is strictly convex in s such that s�(zl; zh) =�
1 i¤ Y (zl;zh;1)>Y (zl;zh;0)

0 otherwise .

Proof. See Appendix B

Intuitively, the convexity of the reward function in assumption SA II.3

carries on to the relationship between teams� surplus and helping time as

long as helping time is e¢ cient and a > 0 as in SA I.1. In other words, if p

is su¢ ciently convex given f and a, then for all feasible teams s�(zl; zh) = 1.

Reciprocally, if f is su¢ ciently small relative to a given p, then for all feasible

teams s�(zl; zh) = 0.

Finally, for notational convenience, since from Proposition 4, s� = 1 if

Y (zl; zh; 1) > Y (zl; zh; 0) and 0 otherwise, we de�ne Y1(zl; zh) � Y (zl; zh; 1) =

p(zl + f(zh)) + p(zh(1 � a)) and Y0(zl; zh) � Y (zl; zh; 0) = p(zl) + p(zh).

Similarly, let wi(z) = wi(z; 1) for i = h; l, and w0(z) = wi(z; 0) for i = h; l

be the payo¤s of individual riders. Note that w0(z) = p(z) independently of

the ability of her team mate.

15



2.3 Riders�problem

Riders maximize their payo¤s. The problem of a rider z is therefore to choose

the role (leader, helper or individual rider) that maximizes her payo¤s:

max fwl(z); wh(z); p(z)g :

The leader�s problem is to �nd a helper zh that maximizes her payo¤s.

This problem reads as: maxzh [Y1(zl; zh)� wh(zh)]. The �rst order condition

to the leader�s problem yields:12

w0h(zh) = p
0(zl + f(zh))f

0(zh) + (1� a)p0(zh(1� a)) > 0: (1)

From our standing assumptions SA I and SA II we already know that

the equilibrium payo¤s function for helpers is strictly increasing in helpers�

ability.13

Symmetrically, the helper�s problem is to �nd a leader zl that maximizes

her payo¤s. This problem reads as maxzl [Y1(zl; zh)� wl(zl)]. The �rst order

12We refer the reader to Appendix A for a formal presentation of the second order
conditions to the leader�s and helper�s optimization problem.
13As shown in Appendix A, the second order conditions to the riders� problem also

indicates that the payo¤s functions are strictly convex.
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condition to this problem is:

w0l(zl) = p
0(zl + f(zh)) > 0: (2)

From our standing assumptions SA I and SA II, it follows that the equi-

librium payo¤s function for leaders is strictly increasing in leaders�ability.

The �rst order conditions pin down the slopes of the payo¤functions. The

level of these two functions wl(z) and wh(z) together with the slopes will de-

termine the set of riders for which wh(z) = max fwl(z); wh(z); p(z)g (the set

of helpers), the set of riders for which wl(z) = max fwl(z); wh(z); p(z)g (the

set of leaders) and the set of riders for which p(z) = max fwl(z); wh(z); p(z)g

(the set of individual riders).

2.4 Equilibrium

Let L � Z be the set of leaders, H � Z the set of helpers and I = ZnL[H �

Z the set of individual riders. Note that the sets H and L are endogenously

determined and not necessarily disjoint. This allows for the possibility that

at some ability level, riders might be indi¤erent between being a leader or a

helper.
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De�nition 5 A feasible assignment in this economy is a positive measure 

on Z2 such that:

Z
zl2Z

d(zl; z) +

Z
zh2Z

d(z; zh) = d�(z);8z 2 Z:

Intuitively,
R
zl2Z d(zl; z) is the quantity of riders z that become helpers

while
R
zh2Z d(z; zh) is the quantity of riders z that become leaders. Let �(�)

be the set of feasible measures  given �.

De�nition 6 An equilibrium in this economy consists of:

� two payo¤s functions wh(zh) and wl(zl) and,

� a feasible assignment  and sets L � Z and H � Z such that: riders

choose a role (helper, leader or individual rider) and their eventual

leader or helper so as to maximize their own payo¤s.

The following two propositions show important characteristics of the equi-

librium assignment.

Proposition 7 Under SA I and SA II, in equilibrium, more able leaders are

matched with more able helpers.
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Proof. See Appendix B

This result essentially follows from the convexity of the reward function

p and the fact that better helpers also happen to be better riders.

Proposition 8 Let z(l) be the ability of riders such that wl(z(l)) = p(z(l)).

Under SA I and SA II, there is the following strati�cation in equilibrium: i)

there are no leaders of ability lower than z(l) and ii) there are no individual

riders of ability higher than z(l).

Proof. See Appendix B

This type of strati�cation is much more general than the strict strati-

�cation obtained in other models of organization. For instance, the model

developed by Rosen (1982) predicts that more able agents become managers

of less able ones (workers). Garicano and Rossi-Hansberg�s (2006) model

is a bit richer in terms of strati�cation as it allows for self-employed work-

ers. However, still the least able manager is more able than the most able

self-employed and the least able self-employed is more able than the most

able worker. The model presented in this paper o¤ers a richer strati�cation

where, interestingly enough, some leaders could be of lower ability than some

helpers (of more able leaders), some individual riders could be of lower ability
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than some helpers and at some ability level, some riders may become leaders,

others helpers.

Several special cases are worth noting. First, suppose that z(l) > z.

In that case, all riders prefer riding individually than becoming a leader.

Since, there are no leaders there cannot be any helper either. All riders ride

individually. This case arises when p(:) is not convex enough given f(:) and

a.

Second, suppose that z(l) < z. This means that all riders prefer becoming

a leader than riding individually. There are no individual riders.

Finally, as soon as z(l) < z, there will be intervals of helpers and leaders.

In particular, a perfectly strati�ed equilibrium could arise. We could have

for instance riders of ability z 2
�
z; z(h)

�
becoming individual riders, riders

z 2 [z(h); z(l)) becoming helpers and riders of ability z 2 [z(l); z] becoming

leaders. Similarly, we could have a strati�cation where riders of ability z 2

[z; z(h)) become helpers, riders of ability z 2 [z(h); z(l)) become individual

riders and riders of ability z 2
�
z(l); z

�
become leaders.
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2.5 Existence and optimality

To study the properties of an equilibrium in this economy it is useful to

write the social planner�s problem (SPP) associated. Using that Y0(zl; zh) =

p(zl) + p(zh) and the constraint in De�nition 5, this problem reads as:

SPP � = max
(L;H)2Z2;2�(�)

�Z
I

p(z)d�(z) +

Z
L�H

Y1(zl; zh)d(zl; zh)

�
(P1)

We �rst show that an optimal solution (L;H; ) exists.

Proposition 9 Under SA I and SA II, an optimal solution (L;H; ) to SPP

exists.

Proof. See Appendix B

De�ning w := maxfwl; whg for notational convenience, the dual program

(D1) to the social planner�s problem is:

DP � = min
w

Z
Z

w(z)d�(z) (D1)

s:t:

w(z) � p(z) for all z 2 Z(i)

w(zl) + w(zh) � Y1(zl; zh) for all zl; zh 2 Z2 (ii)
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Constraint i) in the dual program corresponds to the condition of individual

rationality (riders always have the option of remaining unmatched). Con-

straint ii) guarantees that an outcome is not blocked by any coalition. If ii)

is not satis�ed, a pair zl and zh can always break up and reunite splitting

Y1(zl; zh) in such a way that both are better o¤ (zl gets more than w(zl)

and zh gets more than w(zh)). Using constraint i) and ii), it is easy to see

that the weak duality inequality holds DP � � SPP �. Proposition 10 in fact

states that there is duality.

Proposition 10 Under SA I and SA II, there is duality, i.e. SPP � = DP �.

Proof. See Appendix B

This result allows us to prove the following proposition.

Proposition 11 A feasible tuple ((wh; wl); (L;H; )) that solves both the pri-

mal and dual program maximizes riders payo¤s.

Proof. See Appendix B

A direct corollary of Proposition 11 is:

Corollary 12 The pair of payo¤s functions (wl; wh) that maximizes riders�

payo¤s is Pareto Optimal.

Proof. See Appendix B
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2.6 Comparative statics

Performance inequality will be lowest in autarky, measuring inequality by

the range. This result is obvious for two reasons. First, from Proposition

3, in a hierarchically organized team, the most able rider becomes leader

of the team. Second, from Proposition 8, riders at the top of the ability

distribution become either leaders or helpers. Combining these two results,

in an economy with hierarchical organization, the most able riders must

necessarily be leaders. The performance at the top of the distribution in

the economy with hierarchical organization must therefore be larger ceteris

paribus than in autraky. Similarly, from proposition 8, we know that riders

at the bottom of the distribution of ability either become a helper or ride

individually. Hence ,the performance at the bottom of the distribution of

ability is at most equal to that of a ceteris paribus same economy in autarky.

It follows that the range will be lowest in autarky ceteris paribus.

Without imposing further structure, the model also makes predictions

about payo¤s inequality. Since the best riders become leaders and since

w
00
l > p

00
> 0 we know that payo¤s inequality in the upper tail is larger in the

economy with hierarchical organization. We also know that the least able

riders either become individual riders or helpers. However, since, without
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more structure, we cannot conclude about the sign of w
00
h � p

00
, we cannot

conclude about inequality in the lower tail.

Regarding the range of payo¤s, if the least able rider is an individual

rider, we have wl(z) � p(z) and hence wl(z) � p(z) � p(z) � p(z) such that

the range must be lower in autarky. However, if the last rider is a helper,

we have wh(z) � p(z) and wl(z) � p(z), and we cannot conclude about

wl(z)� wh(z) 7 p(z)� p(z).

3 Empirical evidence

3.1 Organization in road cycling

Testing the predictions of our model requires at the minimum to have access

to data about an industry where helper-leader relationships exist (condition

1). Measuring the impact of hierarchical organization on performance in-

equality in the industry requires in addition that i) the performance v(z)

is measured at the individual level (condition 2), ii) the industry has expe-

rienced a change in the incentives to organize hierarchically within teams

(condition 3) and, iii) a measure of the extent of hierarchical organization

within teams is available (condition 4). Road cycling constitutes a rare case
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where these 4 requirements are satis�ed.

Condition 1: helper-leader relationship.

Road cycling racing is an individual sport where the �rst to cross the

�nish line wins. However, unlike most individual sports, road cycling riders

have traditionally been grouped into teams. Teams�tactics (organization)

has become an important aspect of the sport. Tactics turns out to be inherent

in this sport since the aerodynamic bene�t of drafting, following as closely as

possible the slipstream of the rider in front, can save as much as 40% of the

energy compared to riding alone. Some teams therefore designate a leader

and have the remaining riders serve as a �wind shield�for their leader to spare

energy until critical moments of the race (�nal climb during a mountain stage

for instance). Helpers also play the role of a �donkey�during races, carrying

food and water to their leader, or exchange their wheels or even bike in case

of a mechanical problem of their leader during the course. This hierarchical

organization is especially important during stage races, among which The

Tour de France constitutes the event of the year.14

14See McGann and McGann (2006) for a detailed account of the history of the Tour de
France.
In 2008, the winner of the Tour de France received e450,000 in prize money or 5 times

more than the winner of the Giro (e90,000). That year, the total prize money distrib-
uted on the Tour de France amounted to e3,269,760 or 2.4 times more than on the Giro
(e1,380,010).
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Condition 2: measure of individual performance.

The performance of each rider v(z) is readily measured by his average

velocity de�ned as the total distance of the event divided by his �nishing

time.

Condition 3: change in organizational incentives.

It is worth noting that since the end of the 1960s, several developments

indicate that teams participating at the Tour de France have progressively

become more hierachically organized, respecting hence condition 3.

First, the Tour de France has moved from national to trade teams at

the end of the 1960s. Initially, the Tour was opened to all riders and most

of them were enrolled in trade teams. However, the organizer of the Tour,

Henri Desgrange, insisted that while riders could compete in the name of

their sponsors, no cooperation or tactics would be allowed between these

riders. However, in 1929, the Belgian rider Maurice De Waele won the Tour

with the �illegal�help of his team mates even though he was ill. This event

marked Henri Desgrange: �My Tour has been won by a corpse,�and led him

to deny participation to trade teams. Only national and regional teams were

allowed from 1930 until 1961. The hierarchical organization within teams

became more di¢ cult since most riders belonged to rival trade teams for the
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rest of the season. The loyalty of riders was sometimes questionable, within

and between teams, leading to an ine¢ cient organization as can testimony

several famous events.15 Under the pressure of sponsors that paid the salaries

of riders the whole year long but were denied publicity from the season�s

major event,16 the organizers decided to come back to trade teams by the

end of the 1960s for good.

Second, the media exposure of the Tour de France has grown ever since

and so have the stakes. Figure 2 shows the evolution of the total prize money,

corrected for in�ation, distributed on the Tour since 1950. The total prize

money were roughly steady from 1950 to 1971 and started increasing ever

since, at 3% per year between 1971 and 1985 and 5% thereafter.

Third, we observe a convexi�cation of the payo¤s by rank. As shown in

Figure 3, the average share of prizes allocated to the winner was about 4.5%

between 1950 and 1975. It increased to an average of 6.8% between 1975 and

1985. Since 1985, the winner goes home with about 15% of the total amount

15In 1959, the French team was made up of many strong riders such as Raphaël Gémini-
ani, Henri Anglade and Jacques Anquetil. The French team was full of internal rivalries.
Part of team decided to help spanish rider Federico Bahamontes win rather than Henri
Anglade in the hope to win more fees during the post-Tour criteriums as Bahamontes was
a much poorer rider on �at closed circuits than Anglade.
16Trades were partly accommodated for with the authorization for the riders to put

their respective trades name on their jersey and the introduction of the Caravan. The
Caravan consists in a trade parade preceding the riders during the Tour de France. This
caravan is praised by the spectators and reached an height between the 30s and the 60s.
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of money prizes distributed during the Tour de France.17 A prediction of our

model is that a convexi�cation of the payo¤s function p(:) leads to greater

incentives to organize teams hierarchically.

Condition 4: measures of the extent of hierarchical organization within teams.

A key element of the Tour de France to measure the extent of hierar-

chical organization, is that a few of the 20 stages that determine the �nal

classi�cation are individual time trials. An individual time trial is a stage

during which riders ride alone against the clock. There is no help possible

between riders during such a stage such that s = 0 for all teams during these

stages. This means that the velocity of a rider during such a stage re�ects

his true individual ability.18 It follows that the di¤erence in velocity between

the leader of a team and his helpers during an individual time trial re�ects a

team composition e¤ect, i.e. the pure ability di¤erences between riders. This

17It should be noted that the prizes won by each rider of a team are usually pooled
together and redistributed within the team.
18It might be argued that helpers will put on less e¤ort during a long individual time

trial to save energy for helping their leader in the next stages. Fortunately, since 1970,
most Tours started with a short individual time trial, i.e. the Prologue. Compared to
other individual time trials that generally last between 45 to 60 minutes and occur after
several stages, the Prologue is a short e¤ort of about 10 to 15 minutes that occurs before
any other stages. This means that riders are fresh from the start and recover rapidly
from their e¤orts during the Prologue. Furthermore, the stages following the Prologue
are generally �at stages ending with a massive sprint so that the amount of helping time
devoted by helpers of �nal classi�cation riders is limited during the stages following the
Prologue. Hence, in contrast to other individual time trials, during the Prologue, riders
have no incentives not to perform at their best, and for each rider the measured velocity
during the Prologue reveals the true ability of riders v(z) = z.
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contrasts with the velocity di¤erence in the �nal classi�cation that re�ects

both the composition of the team and the hierarchical organization. Under

plausible assumptions presented in the next section, results from individual

time trials, and in particular the Prologue, enable us to identify the team

composition e¤ect and hence derive a measure of help intensity within team.

3.2 Methodology

The empirical strategy is broken down into two steps. In the �rst step,

we identify the help intensity for each team and each Tour using data at the

rider�s level, and in particular the velocity of riders i) in the �nal classi�cation

of the Tour de France and ii) in the Prologue. In the second step, we use

features of the distribution of help intensity to explain the evolution of overall

performance inequality over time.

3.2.1 First step: Identi�cation of helping intensity

In contrast to the setting of our model where teams are composed of one

leader and one helper, in the Tour de France, each team is composed of 9

riders. Hence, a leader potentially receives the help of eight helpers.19 Using

19From 1970 up until 1985, there were 10 riders in each team at the start of the Tour
except for 1972 and 1973 where each team was composed of 11 riders. Since 1986, there

29



the terminology of our model, a leader l has velocity given by v(zl) = zl +P8
il=1

silf(zil) where il indexes the helpers of leader l. Similarly, the velocity

of each helper il is given as: v(zil) = zil � asilzil. The average velocity of the

helpers of leader l is then given as: vl = 1
8

P8
il=1

v(zil) = zl � a
8

P8
il=1

silzil

where zl = 1
8

P8
il=1

zil is the average ability of the helpers of leader l.

Let rl � v(zl)�vl measure the within team velocity inequality in leader�s l

team. Note that rl = cl+hl where cl � [zl � zl] and hl �
�P8

il=1
sil
�
a
8
zil + f(zil)

��
.

This measure of within team inequality is decomposed into two terms: the

team composition e¤ect20 cl that captures the di¤erence in ability between

leader l and his �average�helper and the help intensity e¤ect hl that captures

the extent of hierarchical organization within team.

Unfortunately, neither cl nor hl are directly measured in the data. How-

ever, as argued in Condition 4 above, during the prologue, sil = 0 for all il

and all l. Denoting zpi the ability of rider i at the Prologue and v
p
i = v(z

p
i ) his

are 9 riders by team.
20Broadly speaking, there are four �ability types� of riders participating at the Tour

de France. Besides leaders that perform very well allround, there are sprinters that are
(very) good at short time trials but (very) bad at mountain stages, �rouleurs�that are good
allround and climbers that are very good at mountain stages but mediocre at (short) time
trials. This means that swapping one ability type for another within team will generally
have consequences both for the inequality in the �nal classi�cation AND the Prologue.
We exploit this relationship below in the identi�cation of help intensity. In the robustness
checks we also perform the same analysis but excluding sprinters (that are relatively easy
to identify in the data) to further account for the composition e¤ect.
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velocity, this means that v(zpi ) = z
p
i for all i. It follows that the within team

inequality at the Prologue reads as rpl = z
p
l � z

p
l � c

p
l for a team l. Since the

ability required to perform well at the Prologue might only be a subset of the

abilities required to perform well in the �nal classi�cation, rather than using

rpl as a proxy for cl and deriving hl as rl � c
p
l , we assume that cl is linearly

correlated with cpl � r
p
l and, hl is orthogonal to r

p
l . We therefore identify hl

as the residuals of an orthogonal projection of rl onto r
p
l . Indexing time by

t, we have:

rlt = �0 + �1r
p
lt + elt: (3)

By construction, the residuals elt of this equation are orthogonal to r
p
lt �

zplt� z
p
lt. For each team l in every Tour t we identify the help intensity hlt as

elt.

3.2.2 Second step: Estimation of the e¤ect of help intensity on

overall performance inequality

Let Rt be a measure of the overall performance inequality during Tour t. We

use two measures of help intensity to explain the evolution of Rt over time.

The �rst measure is the average help intensity at Tour t, say et = 1
Nt

P
l elt
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where Nt is the number of teams at Tour t. The second measure is the range

in the help intensity de�ned as ret = maxl elt�minl elt. We then consider the

following equation:

Rt = �0 + �1et + �2r
e
t + �

0
3Xt + ut;

where Rt is either proxied by the range, the reduced range, the lower range

or the upper range in the �nal classi�cation depending on the speci�cation

of the model and Xt are control variables. ut are i.i.d. residuals.

The parameters �1 and �2 are the parameters of interest that relate the

evolution of the distribution of help intensity (mean and range across teams)

to the overall inequality. We also consider the following control variables:

1. 4 measures of internationalization:

(a) The percentage of riders from the core21 countries (1-globalization),

(b) the percentage of riders from France (%French),

(c) the percentage of riders from Italy (%Italian) and,

(d) the percentage of riders from Spain (%Spanish),

21Belgium, the Netherlands, Luxembourg and Switzerland.
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2. a time trend that captures technological development in a wide sense:

let it be the type of bicycle and gear used, training methods, nutrition

(including doping) etc.,

3. the di¢ culty of a particular Tour: we use as proxy the failing rate, i.e.

the percentage of riders �nishing.22

3.3 Data

For the empirical exercise, our main source of data is from http://www.tour-

giro-vuelta.net/, a website managed by Michiel van Lonkhuyzen and data

from http://www.letour.fr/HISTO/fr/TDF/. To correct for eventual mis-

takes and/or omission (a few distances and winning times), we cross checked

between these two datasets but also with additional sources and in par-

ticular with Wikipedia for the total distance and the winning time and,

http://www.ledicodutour.com/ and http://www.memoire-du-cyclisme.net for

the general classi�cation of the tour de France. Our database covers the Tour

de France between 1947 and 2011.

For each participant appearing in the �nal classi�cation of any Tour,

22We have also experimented with the direction of the tour de France (Pyrenees before
or after the Alps) and the percentage of riders participating for the �rst time but this does
not change the results.
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we calculate two velocity measures: i) the Tour velocity, de�ned as the total

distance of the tour divided by the participant�s �nishing time, for the period

1947-2011 and ii) the Prologue velocity de�ned as the distance of the Prologue

divided by the participant�s �nishing time at the Prologue, available since

the �rst Prologue in 1970 except for the Tours without Prologue, i.e. 1971,

1979, 1986, 1988, 2008 and 2011.

Overall Inequality

Our data enable us to derive a distribution of the Tour velocity for each

Tour as well as its associated measures of inequality. In particular, we con-

sider the range (velocity of the winner - velocity of the last rider) that con-

stitutes an e¢ cient estimate of inequality at time t (Parkinson, 1980).23 For

robustness purposes we also consider the range at speci�c parts of the distri-

bution. The reduced range, de�ned as the di¤erence between the inequality

of the top and bottom 5% riders, is considered in order to control for ex-

treme behavior: the high inequality observed in some years could be due to

exceptional cluster of gifted riders such as the couple Hinault and Lemond

in 80�s or Armstrong and Ulrich in the early 2000�s. Similarly, asymmetric

ranges (upper and lower) are introduced to disentangle the factors a¤ecting

23More precisely he showed that R2
t

4 ln 2 converges to the spot volatility at time t.
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the leaders and the helpers. These fours variables (range, restricted range,

upper range and lower range) constitute the dependent inequality variables

to be explained.

Figures 4 shows the evolution of the Tour velocity distribution over time.

The �gure clearly indicates a surge in inequality, represented here by the

range of the Tour velocity distribution. This movement appears at the end

of the 1960s. It is noticeable that this in�ection turns out to be synchronous

to the authorization of trade teams to participate and the increase in the

prize money distributed.

To have a better insight of this remarkable development, we have also

represented in Figure 5 the evolution of the Tour velocity density over time

and in Figure 6 the evolution of the cumulative distribution of Tour velocity.

Interestingly enough, it appears in Figure 5 that the higher Tour velocity

inequality takes the form of a progressive modi�cation of the shape of the

distribution. While it was unimodal for the 1950s and 1960s, it progressively

moves to a bimodal shape from the 1970s on. This indicates that a small

group of top riders have improved their Tour velocity (relative to the con-

temporaneous mean Tour velocity) while the bulk of the riders have seen

their performance deteriorate. Hence the inequality within the peloton is
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rising but in a very peculiar way. Figure 6 con�rms this24 but also informs

us about the proportion of riders that have increased their performance rel-

ative to the contemporaneous mean overall velocity. This part can be found

as the �xed point of the CDF and roughly corresponds to 0:6 � 0:7. This

means that 30 � 40% of the riders improved their performances relative to

the contemporaneous mean.

Figures 5 and 6 clearly indicate that inequality has strongly increased in

the peloton of the Tour de France since the end of 1960s. Our intuition is

that the modi�cation of the organization of teams, for the reasons listed in

Condition 3 above, impacted positively the inequality.

Within team inequality

We identify the leader of each team as the rider with the highest Tour

velocity. Within each team, the remaining riders that �nish the Tour are then

considered as the helpers. The within team inequality between the leader and

his helpers is given as rl = v(zl)� 1
Nl�1

PNl�1
il=1

v(zil) where Nl is the number

riders of team l that �nished the Tour.25

24The twist of the cumulative distribution over time indicates the movement towards
bimodality.
25Since 1970, on average, 30% of the riders does not �nish the Tour. For the vast

majority of these riders, the reason for not �nishing is either a fall or sickness. We therefore
herewith make the implicit assumption that the riders that do not �nish the Tour were
randomly drawn from the distribution of riders. Note however, that we control for the
failing rate in our empirical analyses below.
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Figure 7 shows the evolution of both the average within team inequality

in the �nal classi�cation, i.e. rt = 1
Nt

PNt
l=1 rlt, and at the Prologue r

p
t =

1
Nt

PNt
l=1 r

p
lt. Strikingly, the within team inequality at the Prologue is fairly

stable over time. This supports the idea that changes in the composition

of teams over time, if they actually have occurred, have not a¤ected the

inequality within team. In contrast, the within team inequality in the �nal

classi�cation follows the same general pattern as the overall inequality in

the �nal classi�cation. These two pieces of information together support the

idea that the within team inequality is primarily driven by the rise in help

intensity within team.

3.4 Results

We �rst present in Table 1 the results of an Ordinary Least Squares (OLS)

estimation of Equation 3. The table indicates that the relationship between

the within team inequality in the �nal classi�cation and the within team

inequality at the Prologue is positive and signi�cant at 5%. The magnitude

of the coe¢ cient is economically very important. A 1km/h higher inequality

at the Prologue is associated with a 0.03km/h higher inequality in the �nal

classi�cation. Stated otherwise, a leader that is 14 seconds faster at the
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Prologue than his �average�helper is 4 minutes and 12 seconds faster in the

�nal classi�cation, ceteris paribus (without any organization within team).26

Figure 8 clearly shows that the average help intensity has increased over

time following a similar pattern as the average within team inequality in

the �nal classi�cation. As shown in Table 2, simple OLS regressions of the

average help intensity on the (de�ated) money prices allocated to the winner

of the Tour or its share in total money prices distributed during the Tour,

clearly indicate that our measure of help intensity is signi�cantly related

with variables that are, according to our model�s predictions, linked to the

incentives to organize hierarchically within teams. In fact, these two variables

alone explain about 57% and 15% respectively of the variance in our measure

of help intensity over time.

Second, we present the results of OLS regressions of measures of overall

performance inequaltiy on features of the distribution of help intensity in

Table 3. The R-squared providing information on the quality of the regres-

sions are extremely high (between 70% and 90%) for all measures of overall

inequality. Our set of variables seems to constitute an adequate space to

26A typical Prologue is 10km long and covered in about 12 minutes (50km/h). A typical
Tour de France is about 3,500km long and covered at an average velocity of about 39km/h.
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analyze the inequality.27 More importantly, the signs of the estimators are

in line with our theoretical model. For all measures of overall inequality con-

sidered, our measure of help intensity has a positive impact, signi�cant at

1%. This result provides a strong support for hierarchical organization as an

explanation for the rise in performance inequality among riders in the Tour

de France. Another remarkable result is that not only the sign but also the

magnitude of the elasticity is robust to our choice of inequality measure,28

ranging from 0.83 to 1.03. Our estimates indicate that an increase of help

intensity leading to an increase of 1km/h in the velocity of a leader relative

to that of his (average) helper leads to an increase of about 1km/h in the

overall inequality.

Regarding the other candidates, we notice that only the between team

inequality in help intensity is (weakly) signi�cant and with the correct sign.

All other variables are statistically insigni�cant. To summarize our results,

it appears that hierarchical organization is the key variable that explains the

27Note that misspeci�cation tests for autocorrelation (LM of Godfrey, 1978), het-
eroscedasticity (Breusch-Pagan, 1979), normality (Jarque and Bera, 1980) and structural
break (Chow test with an unknown break date à la Andrews, 1993) are performed and
support the idea of a correct speci�cation. Finally, the presence of a unit root has been
tested for each endogenous variable and rejected. All the tests are available upon request
from the authors.
28It is noticeable that a simple t-test would lead to not reject the equality between these

coe¢ cients.
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rise in productivity inequality in the Tour de France.

3.5 Robustness Check

To assess the robustness of our �ndings, two types of analyses are performed.

First, we investigate further the e¤ect of team composition on our results.

Second, we confront another prediction of the model with an additional styl-

ized fact of the evolution of the distribution of performance.

3.5.1 Stability of the relationship between hierarchical organiza-

tion and overall performance inequality

We consider controlling further for the team composition e¤ect by excluding

sprinters from the analysis. To �ag sprinters, we collected additional infor-

mation about the classi�cation of riders during a stage that ended with a

massive sprint. We then labeled �sprinter�every rider that i) �nished within

the 20 best riders during the sprint and ii) did not �nish within the 20 best

riders in the �nal classi�cation. Having �agged sprinters, we run our two-step

procedure excluding sprinters.

The results of the �rst and second step regressions are reported in Table

4. The table clearly indicates that both the coe¢ cients of the �rst and second
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step are of similar magnitude to the one presented in Table 3. This means

that controlling further for the team composition e¤ect by excluding sprinters

from the sample does not a¤ect the results.

3.5.2 Can the model reproduce the stylized facts?

To further evaluate the empirical prediction of the model, we propose the

following test. Consider N teams and suppose that each team has only one

leader and all 9 riders of each team �nish the tour. We also assume that

initially, riders are assigned at random to teams and help intensity is zero for

every riders (autarky). This means that the �nal classi�cation re�ects the

true distribution of ability. In particular, the velocity of the N th rider rela-

tive to that of the N + 1th rider re�ects their ability di¤erential. Following,

for instance, a convexi�cation of the reward function, suppose that the new

equilibrium exhibits a strict strati�cation of riders: all N leaders are strictly

better than any of the 8 � N helpers. In the �nal classi�cation, the �rst

riders are the leaders of the various teams and the last 8�N riders are their

helpers (or riders riding individually). The performance of all leaders in-

creases while the performance of all helpers decreases holding everything else

constant. The model has three important predictions. First, the within team
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inequality increases in all teams. Second, the overall inequality increases too.

Third and most importantly, the performance of the N th rider (the least able

leader) increases while the performance of the N +1th rider (the best helper)

decreases. This means that at constant distribution of ability, we should

observe a movement of riders above the 100 �
�
1� N

9N

�
= 100 � 8

9
� 90th

quantile away from riders below the 90th quantile.

Figure 6 clearly shows that the distribution becomes more unequal over

time but it is striking to see that all curves seem to be twisting clock wise with

a twisting point at the 60th quantile. Although this sketchy model predictes

a twist at the 90th quantile, one should bear in mind that 1) we have assumed

a strict strati�cation which is only a special case in the economy depicted in

Section 2 and 2) the model depicts economies without performance shocks

(no sickness during the tour, no falls, no exclusion for doping etc.) and with

perfect information about the ability for all riders. With this in mind, we

take the results presented in Figure 6 as supporting our hypothesis that the

increase in the performance inequality is primarily due to an increase in the

hierarchical organization of teams (via help intensity).
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4 Discussion

This paper investigates the relationship between hierarchical organization

and performance inequality within and between organizations. An equilib-

rium theory of the organization of work in an economy with an implicit

market for productive time is �rst presented. In this economy, agents have

limited productive time and can choose to produce in autarky, buy produc-

tive time from helpers to increase own production or, sell their productive

time to a leader and thereby give up own production. This implicit market

gives rise to the formation of teams, organized in hierarchies with one leader

at the top and helpers below. We prove that an equilibrium exists and is

e¢ cient and show that relative to autarky, hierarchical organization leads to

higher within and between team payo¤s/productivity inequality.

To illustrate the main prediction of our theoretical model, i.e. team orga-

nization increases performance inequality, we propose an empirical analysis

in the context of professional road cycling. Considering such a framework

is novel in this literature and has several key advantages compared to other

markets to study the existence of an implicit market for productive time.

These three key advantages are i) road cycling exhibits a clear change in the

incentives to organize work within team since the end of the 1960�s, ii) a
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direct measure of individual productivity is available in that sector via rid-

ers�velocity and iii) results from individual time trials enable us to identify

the composition of team and hence derive a measure of help intensity. Re-

sults of performance inequality regressions robustly show that leaders�veloc-

ity increased signi�cantly (economically and statistically) more than that of

helpers because of the increasing help intensity within teams. This supports

hence the model�s prediction of a positive relationship between hierarchical

organization and productivity inequality.

Although the core model developed in the paper relies on some of the

characteristics of professional road cycling, we believe this core model con-

stitutes an adequate corpus to analyze the relationship between earnings

inequality and hierarchical organization of �rms in many other industries.

Several extensions may be proposed in the future to make it �t with other

industries. First, in the core theoretical model presented in this paper, the

size of teams is �xed exogenously following hence the rule that applies in

professional road cycling. It is obvious that such an hypothesis does not

hold in other organizations. For example a law �rm can engage as many

collaborators as possible to help a leading lawyer prepare for a trial. Law

�rms can to some extent adjust not only the intensive but also the extensive
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margin of organizational structure. Second, the core model considers a single

event (the Tour de France). Though the Tour de France is the single most

important event of the season, teams usually engage in many other events

(such as the classics and shorter tours). The hierarchical organization of a

team may thus vary in function of the race: helpers during major races may

be leaders during minor races and vice versa. Interestingly enough, this dy-

namic organization can be perceived as part of the compensation o¤ered by

the leaders (during major events) to their helpers. Modelling this dynamic

organization of team seems particularly interesting. Third, the core model

presented in this paper excludes any role for team managers. One may think

of several interesting ways of including managers into the model. One way

would be to assume that managers improve teams�performance. Another,

perhaps more interesting, extension would be to incorporate the strategic

role played by managers when performance outcome is uncertain. Finally,

applying the model to segments of the labor market raises the question of

the interpretation of the pricing function p(:). These various extensions do

not minimize the importance of the core model presented in the paper, they

rather highlight its importance in this literature.
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Appendix A: Second order conditions:

The second order condition to the leader�s problem reads as:

w00h(zh) > p
00
(zl + f(zh)) (f

0(zh))
2
+ p

0
(zl + f(zh))f

00
(zh) + (1� a)2p

00
(zh(1� a))(4)

if 0 < p(zl + f(zh))� p(zl)� p(zh) + p(zh(1� a))

and

w
00

0 (zh) > p00(zh) > 0 otherwise.

Similarly, the second order condition to the helper�s problem reads as:

w00l (zl) > p
00
(zl + f(zh)) (5)

if v(zl + f(zh))� p(zl) > p(zh)� p(zh(1� a))

and

w
00

0 (zl)� p00(zl) > 0 otherwise.

An important remark is that our standing assumptions SAI and SAII

imply that w00i (zi) > 0 for i = l; h so that equilibrium payo¤s functions are

convex.
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Appendix B: Proofs of propositions

We �rst prove Lemma 13 that will be used in the proof of Proposition 3.

Lemma 13 Under SA II, we have p(x2 +�2)� p(x2) � p(x1 +�1)� p(x1)

for all x2 � x1 � 0 and �2 � �1 � 0.

Proof. Since from SA II.2, p0(z) > 0 for all z � 0, it follows that p(x2+�2) �

p(x2 +�1) for all �2 � �1 � 0.

It remains to show that p(x2 +�1) � p(x2) � p(x1 +�1) � p(x1) for all

x2 � x1 � 0 and �1 � 0.

Write g�(x) � p(x + �) � p(x) with � � 0. By de�nition we have

g0�(x) = p
0(x+�)� p0(x).

Since p
00 � 0 from SA II.3, p0 is increasing over x so that g0�(x) = p

0(x+

�)� p0(x) � 0. It follows that g�1(x2) = p(x2 +�1)� p(x2) � p(x1 +�1)�

p(x1) = g�1(x1) for x2 � x1.

Proof of proposition 3: More able riders become leaders.

Proof. Take a team of riders with respective ability x and y with x � y

without loss of generality. This team�s surplus is Y (x; y) � maxs p(x +

f(y)s)+p(y(1�as)) when x is the leader and Y (y; x) � maxs p(y+f(x)s)+
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p(x(1�as)) when y is the leader. To prove that x will always be the leader we

need to prove that Y (x; y) � Y (y; x). Denote s0 = s�(y; x) = argmaxs p(y+

f(x)s) + p(x(1 � as)) and denote s1 = s�(x; y) = argmaxs p(x + f(y)s) +

p(y(1� as)). By de�nition we have:

Y (x; y) = p(x+ f(y)s1) + p(y(1� as1)) � p(x+ f(y)s0) + p(y(1� as0)):

Hence, it is enough to prove that p(x + f(y)s0) + p(y(1 � as0)) > p(y +

f(x)s0) + p(x(1 � as0)) for all 1 � s0 � 0. Rearranging terms, we aim at

proving that the following inequality holds for all s0 and x � y:

p(x+ f(y)s0)� p(y + f(x)s0) � p(x(1� as0))� p(y(1� as0)): (6)

Write x1 = y(1 � as0) and x1 + �1 = x(1 � as0) where �1 = x � y +

as0(y � x) and x2 = y + f(x)s0 and x2 + �2 = x + f(y)s0 where �2 =

x � y + s0(f(y) � f(x)). Note that x2 � x1 for all y 2 Z and s0 2 [0; 1].

Inequality 6 can be written as:

p(x2 +�2)� p(x2) � p(x1 +�1)� p(x1) with x2 � x1:
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Following Lemma 13, a su¢ cient condition for this inequality to hold is

�2 � �1. Replacing �1 and �2 by their expression in terms of x and y and

rearranging yields:

�2 � �1 , a(x� y) � f(x)� f(y):

Hence, from SA I.2 we have p(x+f(y)s0)+p(y(1�as0)) � p(y+f(x)s0)+

p(x(1� as0)) for all s0 and x � y. This means that Y (x; y) � Y (y; x) for all

x � y. The surplus of a team is therefore always higher when the most able

rider is helped by the least able one.

Proof of Proposition 4: conditions for a corner solution of s�(x; y).

We �rst prove Lemma 14 that will be used to prove Proposition 4.

Lemma 14 Under SA I and SA II, for all feasible teams (zl; zh) 2 Z2, the

surplus function Y (zl; zh; s) is a strictly convex function of helping time on

s 2 [0; 1].

Proof. Take a team of riders with respective ability x and y and with

x � y without loss of generality. From Proposition 3, rider x becomes the

leader and rider y the helper. This team�s surplus is therefore Y (x; y; s) =
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p(x+ f(y)s)+ p(y(1� as)). The slope of the surplus with respect to helping

time obtains as:

@Y (x; y; s)

@s
= p0(x+ f(y)s)f(y)� p0(y(1� as))ay:

The curvature of the surplus with respect to helping time is given by:

@2Y (x; y; s)

@s2
= p

00
(x+ f(y)s) (f(y))2 + p

00
(y(1� as)) (ay)2 :

From SA I.1 and SA II.3, we have @2y(x;y;s)
@s2

> 0. The surplus function

Y (x; y; s) is strictly convex on s 2 [0; 1].

We can now prove Proposition 4.

Proof. Take a team of riders with respective ability x and y with x � y

without loss of generality. From proposition 3, rider x becomes the leader

and rider y the helper. This team has surplus equal to Y (x; y; s) = p(x +

f(y)s) + p(y(1 � as)). From Lemma 13, we know that Y (x; y; s) is strictly

convex in s on s 2 [0; 1] for all x and y. This means that:

s�(x; y) =

�
1 i¤ Y (x; y; 1) > Y (x; y; 0)

0 otherwise
:
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Using the de�nition of Y and rearranging yields:

s�(x; y) =

�
1 i¤ p(x+ f(y))� p(x) > p(y)� p(y(1� a))

0 otherwise
:

Proof of Proposition 7: Under SA I and SA II, in equilibrium, more able

leaders are matched with more able helpers.

Proof. By the implicit function theorem, write zh = zh(zl) the solution of

Equation 1 and zl = zl(zh) the solution of Equation 2.

First, suppose that zh(zl) and zl(zh) are di¤erentiable. Then, totally

di¤erentiating Equation 1 with respect to zl and Equation 2 with respect to

zh and rearranging yields:

z0h(zl) =
p
00
(zl + f(zh))f

0(zh)

w00h(zh)� p
00(zl + f(zh)) (f 0(zh))

2 + p0(zl + f(zh))f
00(zh) + (1� a)2p00(zh(1� a))

;

z0h(zl) =
p
00
(zl + f(zh)) f

0(zh)

w00l (zl)� p
00(zl + f(zh))

:

From the second order conditions in Equations 4 and 5, the denominators

are strictly positive. Hence, z0h(zl)) > 0 since p
00
(zl + f(zh(zl)))f

0(zh(zl)) > 0

from SA I.3 and SA II.3 and z0l(zh)) > 0 since p
00
(zl(zh) + f(zh))f

0(zh) > 0
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from SA I.3 and SA II.3.

Suppose now that zh(zl) and zl(zh) are not di¤erentiable. We can still

prove that in equilibrium, more able leaders get more able helpers. Take two

teams that arise in equilibrium say (xi; yi), i = 0; 1 where xi is the ability of

the leader and yi the ability her helper. Without loss of generality, suppose

that x1 = x0+ h with h > 0. From the second order conditions in Equations

4 and 5, we know that the wage pro�les are steeper than the productivity

pro�les. Formally, and using the helper�s problem for instance, we have that:

lim
h!0

w0l(x0 + h)� w0l(x0)
h

= w
00

l (x0) > p
00
(x0) = lim

h!0

p0(x0 + h+ f(y0))� p0(x0 + f(y0))
h

:

Using the �rst order condition in Equation 2 to replace w0l(:) obtains:

lim
h!0

p0(x0 + h+ f(y1))� p0(x0 + f(y0))
h

> lim
h!0

p0(x0 + h+ f(y0))� p0(x0 + f(y0))
h

,

y1 > y0:

It follows that in equilibrium, more able leaders are matched with more

able helpers.
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Proof of Proposition 8: Under SA I and SA II, in equilibrium, no riders of

ability lower than z(l) become leaders and no riders of ability higher than z(l)

rider on their own.

Proof. Take any rider of ability z 2 Z. The payo¤s of this rider are wl(z)

as a leader, wh(z) as a helper and w0(z) � p(z) as an individual rider. A

payo¤s maximizing rider will therefore choose the role leading to W (z) =

max fwl(z); wh(z); p(z)g. We are looking for the upper envelop W (z) of the

graph of payo¤s fwl(z); wh(z); p(z)g in z.

Without further restrictions, we already know from the �rst order con-

ditions that leaders�payo¤s function wl(z) is strictly steeper than that of

individual riders p(z), i.e. w0l(z) = p0(z + f(zh)) > p0(z) from SA II. Let

z(l) be the ability of riders so that wl(z(l)) = p(z(l)). This implies that

wl(z) < p(z) � W (z) for all z < z(l) and W (z) � wl(z) > p(z) for all

z > z(l). It follows that in equilibrium, there are no leaders of ability lower

than z(l) and no individual riders of ability higher than z(l). Stated other-

wise, riders of ability lower than z(l) either become a helper or an individual

rider, i.e. wl(z) < W (z) for all z < z(l), while riders of ability higher than

z(l) either become a helper or a leader, i.e. w0(z) < W (z) for all z > z(l).
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Proof of Proposition 9: Under SA I and SA II, an optimal assignment

(L;H; ) exists.

Proof. Sketch of the proof.29 Step 1: We follow Chiappori, Galichon and

Salanie (2011) and show that the social planner problem SPP can be writ-

ten as the primal program of a classical Monge-Kantorovich problem with

symmetric surplus function. Step 2: We then derive the properties of our

model from the properties of the Monge-Kantorovich problem that have been

studied in Villani (2009).

Step 1: Consider a pair of riders (x; y) such that d(x; y) + d(y; x) > 0.

Without loss of generality, suppose that Y1(x; y) > Y1(y; x). The contribution

of this pair to program (P1) would be largest when d(x; y) > d(y; x) = 0.

This means that a solution  for SPP is necessarily such that d(zl; zh) �

d(zh; zl) = 0 whenever Y1(zl; zh) = max (Y1(zl; zh);Y1(zh; zl)). The con-

tribution of a pair (zl; zh) so that Y1(zl; zh) = max (Y1(zl; zh);Y1(zh; zl)) is

therefore

Y1(zl; zh)d(zl; zh) + Y1(zh; zl)d(zh; zl) = Y1(zl; zh)d(zl; zh):

29An alternative proof of existence is to show that �(�) is tight, hence compact by
Prokhorov�s Theorem. Since Y1 is continuous, there exists a solution  of (P1). This proof
is available from the authors upon request.
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De�ne eY1(zl; zh) := max (Y1(zl; zh);Y1(zh; zl)) and let de(zl; zh) := de(zh; zl) :=
d(zl;zh)+d(zh;zl)

2
. Obviously, since eY1 is symmetric, we have that:

eY1(zl; zh)de(zl; zh)+eY1(zh; zl)de(zh; zl) = Y1(zl; zh)d(zl; zh)+Y1(zh; zl)d(zh; zl):
Note that e, not only is symmetric, but also satis�es the feasibility con-

straint of De�nition 5. For symmetric measures, these constraints can be

re-written as:

Z
zl2Z

de(zl; z) =
1

2
d�(z) (a)Z

zh2Z
de(z; zh) =

1

2
d�(z) (b)

de(zl; zh) = de(zh; zl) (c).
Let e�(1

2
�; 1

2
�) be the set of measures e satisfying constraints (a), (b) and

(c). Program (P1) is therefore equivalent to program (P2) below:

SPP � = max
(L;H)2Z2;e2e�( 1

2
�; 1
2
�)

�Z
ZnL[H

p(z)d�(z) +

Z
L�H

eY1(zl; zh)de(zl; zh)� :
(P2)

De�ne program (P2�) as the same maximization as in program (P2) but

without constraint (c) and let SPP �MK be its value. Note that program (P2�)
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reads as the primal program of a Monge-Kantorovich transportation problem

with symmetric surplus. Theorem 4.1 in Villani (2009) asserts that there

exists a solution, say ee, to (P2�) since eY1 is upper-semicontinuous. It is now
easy to see that e de�ned by de(zl; zh) := dee(zl;zh)+dee(zh;zl)

2
is also a solution

of (P2�) and satis�es constraint (c) so that it is a solution of (P2). It follows

that  de�ned by30 d(zl; zh) :=
�
2de(zl;zh) if Y (zl;zh)=eY1(zl;zh)

0 else is a solution of

(P1). We conclude that there exists a solution to (P1). As a by-product we

have also shown that SPP � = SPP �MK . This last result will be used in the

proof of Proposition 10 below.

Proof of proposition 10: Under SA I and SA II, there is duality, i.e. SPP � =

DP �.

Proof. Sketch of the proof: Step 1: In the proof of Proposition 9, following

Chiappori, Galichon and Salanie (2011), we have shown that the social plan-

ner problem can be re-written as the primal program of a classical Monge-

Kantorovich problem with symmetric surplus function. The value of the two

programs are equal, i.e. SPP � = SPP �MK . Step 2: We proceed in a similar

fashion and show that the dual of the social planner program can be re-

30In case Y1(zl; zh) = Y1(zh; zl) = eY1(zl; zh) the distribution of roles within teams does
not matter. For all � 2 [0; 1], d(zl; zh) = � � 2de(zl; zh) and d(zh; zl) = (1� �) �
2de(zl; zh) is solution.

61



written as the dual of the associated Monge-Kantorovich problem, and show

that the values of these two dual programs are also equal. Step 3: Since Vil-

lani (2009) asserts that there is duality in the associated Monge-Kantorovich

problem, we conclude that there is duality in our one-sided assignment model.

Step 1: The social planner program.

As shown in the proof of Proposition 9, we have SPP � = SPP �MK .

Step 2: The dual program.

The dual program associated to program (P2�) introduced in the proof of

proposition 9 reads as:

DP �MK = min
wl;wh

Z
Z

( ewl(z) + ewh(z)) 1
2
d�(z) (D2�)

s:t:

ewi(z) � p(z) 8i = h; l and for all z 2 Z(i�)

ewl(zl) + ewh(zh) � eY1(zl; zh) for all zl; zh 2 Z2 (ii�).
It is easy to see that (D1) is equivalent to (D2�) but with the additional

symmetry constraint ewl = ewh. We therefore have by de�nition DP � �

DP �MK . Let ( ewl; ewh) be a solution of (D2�) which exists from Theorem 5.10

in Villani (2009). Obviously, (wl; wh) de�ned as wl :=
ewl+ ewh
2

:= wh is also a
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solution of (D2�). Since (wl; wh) satis�es the symmetry constraint it is also

a solution of (D1). We therefore have: DP � = DP �MK .

Step 3: Duality.

Since Theorem 5.10 part i) in Villani (2009) asserts that SPP �MK =

DP �MK as long as eY1 is upper-semicontinuous, we conclude that SPP � =
DP �: there is duality in the one-sided assignment model.

Proof of proposition 11: A feasible tuple ((wh(z); wl(z)); (L;H; )) that solves

both the primal and dual program maximizes riders payo¤s.

Proof. Suppose that w(z) := maxfwh(z); wl(z)g solves the dual program

(D1) and (L;H; ) solves the primal program. We then have:

Z
Z

max(wl; wh)d�(z) =

Z
L

wl(z)d�(z) +

Z
HnL\H

wh(z)d�(z) +

Z
ZnL[H

p(z)d�(z)

=

Z
L�H

Y1(zl; zh)d(zl; zh) +

Z
ZnL[H

p(z)d�(z);

where the �rst equality follows since by de�nition wl(z) = wh(z) = w(z) for

z 2 L\H, wl(z) = w(z) for z 2 LnL\H and wh(z) = w(z) for z 2 HnL\H,

and the second from duality SPP � = DP � proved in Proposition 10.
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Hence:

wh(zh) + wl(zl) = Y1(zl; zh) for  � a:e: (zl; zh) 2 L�H

and

wl(z) = wh(z) = p(z) for �� a:e: z 2 ZnL [H:

Take a leader z�l 2 L that is matched with a helper z�h 2 H in equilibrium

(i.e. so that d(z�l ; z
�
h) > 0). The riders of this team get respectively wh(z

�
h) =

Y1(z
�
l ; z

�
h)�wl(z�l ) andwl(z�l ) = Y1(z�l ; z�h)�wh(z�h). Since (wh(z); wl(z)) solves

the dual program, the feasibility constraints are satis�ed so that wl(z�l ) �

Y1(z
�
l ; zh) � wh(zh) for all zh 2 Z and wh(z�h) � Y1(zl; z

�
h) � wl(zl) for all

zl 2 Z. It follows that helper z�h maximizes the payo¤s of leader z
�
l and

leader z�l maximizes the payo¤s of helper z
�
h.

Proof of corollary 12: The pair of payo¤s functions (wl; wh) that maximizes

riders�payo¤s is Pareto Optimal.

Proof. A feasible tuple ((wh(z); wl(z)); (L;H; )) that solves the primal and

dual program maximizes riders�payo¤s from Proposition 11. Since (L;H; )

solves the primal program, the pair of equilibrium payo¤s (wl; wh) maximiz-

ing riders payo¤s also maximizes social welfare.
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Table 1: Identi�cation of help intensity: regression of within team inequality
at Tour de France on within team inequality at the Prologue.

Variable Within team inequality
Within team inequality Prologue 0.0258**

(0.011)
Constant 0.3632***

(0.023)
Observations 648
R-squared 0.008

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

Table 2: Help intensity and incentives to organize hierarchically.

Variable Help Intensity Help intensity
Price money winner 0.2265***

(0.034)
Share winner 0.0072**

(0.003)
Constant -0.1291*** -0.1135***

(0.020) (0.040)
Observations 34 34
R-squared 0.574 0.149
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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