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Abstract
This paper proposes an equilibrium theory of the organization of
work in an economy with an implicit market for productive time. In
this market, agents buy or sell productive time. This implicit mar-

ket gives rise to the formation of teams, organized in hierarchies with
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one leader (buyer) at the top and helpers (sellers) below. Relative to
autarky, hierarchical organization leads to higher within and between
team payoffs/productivity inequality. This prediction is tested empir-
ically in the context of professional road cycling. We show that the
observed rise in performance inequality in the peloton since the 1970s
is merely due to a rise in help intensity within team and consistent
with a change in the hierarchical organization of teams.

JEL Classification: D2, D3 and L22.

Keywords: Hierarchical organization, productive time, helping time,

inequality, professional cycling.



1 Introduction

Many economies have witnessed a rising wage inequality in the last 5 decades
(Acemoglu and Autor, 2010 and Acemoglu, 2003) alongside with large changes
in many firms’ organizational structure (see e.g. Rajan and Wulf, 2006).
Early theoretical models developed by Lucas (1978) and Rosen (1982) ex-
hibit that earnings inequality raises with span of control. This prediction
has recently been tested empirically in a few studies. Fox (2009) shows that
earnings inequality increases with job responsibility in Swedish and US firms,
and Gabaix and Landier (2008), Garicano and Hubbard (2009) and Tervio
(2008) conclude that the recent increase in earnings inequality in large US
firms and in law firms is largely due to the rise in span of control in these
firms.

This paper proposes an alternative channel through which hierarchical
organization and earnings inequality might be related, namely help intensity.
This paper studies an economy with an implicit market for productive time.
The scarce resource in this market is the time each agent can dedicate to
production. Agents can dedicate their productive time to their own produc-
tion (autarky), buy (part of the) productive time from helpers and herewith

increase their own production, or sell (part of) their productive time to a



leader, hence giving up own production. Since helping time of better helpers
is more efficient, the hedonic equilibrium price for productive time compen-
sates 1) forgone own production and ii) helping ability. This implicit market
for productive time gives rise to teams’ formation. These teams have a hi-
erarchical organization with a leader at the top producing output with the
help of helpers below.

There are many examples of goods and services produced with teams
organized that way. We may think for instance of a lawsuit: The defence of a
case is performed by a leading lawyer who receives full credit for the outcome
of the trial. The leading lawyer however might receive help from other lawyers
at her firm to prepare the trial. The opportunity cost of spending productive
time helping the leading lawyer requires a compensating wage. Yet, other
examples can be found in architect offices, maisons de Haute Couture, music
bands and many more... Interestingly enough, certain sports, in particular
professional road cycling, show a similar organization of teams but present
the advantage of having the size of teams fixed exogenously. These economies
allow us to abstract from the extensive margin and focus on the core: the
relationship between helping time and performance inequality.

The existence of an implicit market for productive time raises many in-



teresting questions about the structure of such an economy. For instance,
who becomes a leader and who becomes a helper? Are leaders more able
than helpers? Are more able helpers assigned to more able leaders? How
does the distribution of payoffs look like? Is there more inequality in payoffs
with hierarchical organization than with autarky?

In this paper, we elaborate a core theoretical model using stylized fea-
tures of professional road cycling. In this core model, the distribution of roles
(leaders, helpers and self-production), the assignment of leaders to helpers,
and the distribution of payoffs (the hedonic price for productive time) are en-
dogenously determined. We show that under mild conditions, an equilibrium
in this economy exists and is Pareto optimal. The equilibrium assignment is
so that i) within teams the better rider becomes the leader, ii) better helpers
are matched with better leaders and iii) some form of stratification arises:
more able agents either become leaders or helpers and less able agents either
become helpers or ride individually. The model can be used to study the link
between hierarchical organization and productivity and/or payoffs inequal-
ity. For instance, we show that relative to autarky, hierarchical organization
leads to greater payoffs/performance inequality.

The core model developed in this paper is most closely related to the



one-sided assignment! models studied by Lucas (1978), Rosen (1982), Gar-
icano and Rossi-Hansberg (2004;2006) and Garicano and Hubbard (2005).
However, in contrast with our model, in these models, output is produced by
agents at the bottom of the hierarchy helped by managers at the top of the
hierarchy. In the economy studied by Garicano and Rossi-Hansberg (2006)
for instance, hierarchical organization arises as an efficient way of sharing
knowledge. In contrast with our model, the implicit market is therein a mar-
ket for knowledge, not productive time. Agents can buy knowledge either
directly by learning, which is costly, or indirectly by “hiring” more knowl-
edgeable agents to solve problems they cannot solve themselves. In these
hierarchical organizations, output is produced by workers helped by more
knowledgeable agents called managers.

In Garicano and Rossi-Hansberg (2006), as in Lucas (1978) and Rosen

(1982),2 a strict stratification arises with production workers at the bottom of

'This contrasts with two-sided assignment models studied in Tinbergen (1956), Becker
(1973), Rosen (1974) and Sattinger (1993) among others where agents on one side of the
market (workers, women, sellers) meet agents on the other side of the market (firms, men,
buyers). These models have been used in the recent literature on CEO pay by e.g. Gabaix
and Landier (2008) and Tervio (2008). More recently, Edmans, Gabaix and Landier
(2009) embedded a moral hazard problem into a talent two-sided assignment model to
study CEO-pay incentives.

2Rosen (1982) recognizes that if the rents function is sufficiently convex then the model
predicts that both the least and most able agents become managers. Rosen (1982) classifies
this case as a “pathology” of the model since it implies that some managers are less able
than their workers.



the distribution of ability, self-employed in the middle and managers (helpers)
at the top. Our model allows for a more general form of stratification in
equilibrium: while leaders are more able than self-employed, some helpers
may be more able than some leaders (of different helpers). Similarly, self-
employed agents could be less or more able than helpers depending on the
primitives of the model.

This paper also relates to the literature on the Monge-Kantorovich trans-
portation problem (see e.g. Villani, 2009). Recently, Chiappori, McCann
and Nesheim (2010) have shown equivalence results between two-sided quasi-
linear hedonic models and the Monge-Kantorovich optimal transportation
problem. We use existence and duality results from the Monge-Kantorovich
transportation literature (Villani, 2009) to study the properties of the one-
sided hedonic economy presented in this paper. In particular, we build on
Chiappori, Galichon and Salanie (2011) that show how a one-sided assign-
ment model can be re-formulated as a two-sided assignment model with sym-
metric surplus, to prove that a competitive equilibrium in our model is Pareto
optimal.

Anticipating on our empirical results, we show that, since the 1970s, the

help intensity within teams has increased sharply in the peloton of the Tour



de France, an increase that is related to changes in the incentives to organize
hierarchically within teams. In turns, we show that the observed rise in
performance inequality in the peloton since the 1970s is merely due to this
increase in help intensity.

The remainder of the paper is organized as follows. Section 2 proposes a
theoretical model that introduces hierarchical organization arising from the
existence of an implicit market for productive time. Section 3 studies the
example of professional road cycling and in particular the Tour de France.

Section 4 concludes.

2 Theoretical model

2.1 Set up

We present the model using the analogy to the Tour de France but one could
also consider any of the previous examples (lawsuit, haute couture, rock
band,...). In these cases, one can replace “riders” by “agents” throughout
this section.

Let riders be endowed with one unit of time and with ability z, z € Z



where Z = [2;Z] with 0 < 2 < 7 < c0.? Let u be the probability measure
representing the distribution of riders’ ability on Z. We assume that ability
is measured in terms of velocity (kilometers per hour) that is, z is the total
distance of the Tour divided by the time it would take rider z to cover this
distance when riding individually.

In this economy, riders decide either to ride individually or coordinate
their efforts within teams. The number of riders in a team is fixed exoge-
nously by rules and for the sake of simplicity we assume it is equal to 2.4
Within each team, one rider becomes the helper of the other. The two riders
must decide who becomes the leader and who becomes the helper. The dis-
tribution of roles within teams is endogenous to the model. Conditions under
which the most able rider becomes the leader are given below in Proposition
3.

In case riders decide to coordinate their efforts, the helper will devote
s € [0, 1] unit of time to her leader. Let vy,(zp,s) = z, — saz, be the velocity

of a helper of ability z; when providing helping time s to her leader. The

3We could work with unbounded support for z without changing much of the model
but this would require to write down boundary conditions for the functions f and v in our
standing assumptions below.

4This assumption restricts the extensive margin compared to Garicano and Rossi-
Hansberg (2006) who study leverage in a knowledge economy. However, this does not
seem to be restrictive in our case since the number of riders in each team participating in
the Tour is fixed to 9 by rules.



parameter a defines a lower bound for the helpers velocity: a full-time helper
has velocity 2z;(1 — a).” The term az;, indicates the helper’s velocity loss by
unit of helping time provided to her leader.’ It seems natural that this loss
will depend on the ability of the helper since, by symmetry, az, can also be
interpreted as the helper’s velocity gain by unit of time spent helping himself.
The helper’s forgone velocity requires a compensation from her leader, say
wp(2n, s). This compensation depends on s and z;, since the forgone velocity
depends on helping time provided s and helper’s ability zj,.

Similarly, let the velocity of a leader with ability z; helped by a helper of
ability 2, providing helping time s be v;(z1, s) = 2+ f(z1,)s with (2, 21,) € Z2,
where f(z,) is a twice differentiable continuous function. The function f(z;)
indicates a leader’s velocity gain by unit of helping time provided by a helper

of ability z;.” This velocity gain generates higher outcome that are (partly)

°For a = 1, vp(zn,1) = 0. This is unrealistic since during the Tour, riders that do
not finish within a certain interval of time after the stage winner are disqualified, i.e.
v;(Ziy §) > Umin Where vy, is the velocity below which riders are disqualified. This rule
is either a constraint on a or a constraint on the helping time riders can provide. In the
remaining of the paper, we assume for simplicity that a is low enough, a < 1, so that
Vp(2h, 1) > Umin.

6Note that all that matters in this economy is the relative shape of the loss of helpers’
velocity to the gain in leaders’ velocity. Assuming a linear shape for the loss in helpers’
velocity, i.e. az, is without loss of generality since the properties of the gain in leaders’
velocity, i.e. the function f() below are defined relative to a.

"Note that the properties of the economy presented in the propositions below continue
to hold if we allow f to depend on the leader’s ability as long as the following restrictions

are satisfied: 1) W >0, ii) %g;’) > 0 and iii) f(z,y) —ay > f(y,z) — az for all

10



used to compensate the helper. Note that if s = 0, even though riders are in
the same team, both riders bike individually and their respective velocity is
simply v;(2;,0) = z; and v, (2p,,0) = 2.

Throughout this paper we maintain the following assumptions about the

efficiency of helping time.

Condition 1 Standing Assumptions I (SA I, hereafter)

1. Helping time is strictly efficient for the leader’s velocity, f(y) > 0 for

all y € Z but strictly costly for the helper’s velocity, 1 > a > 0,
2. Better riders are also better helpers, f'(y) > 0 for all y € Z.

3. Inefficiency of helping someone else increases with ability, f(y) — ay >

f(x) —ax, for all (z,y) € Z? with z > y.®

Assumption SA 1.3 has a strong intuitive interpretation. Remember that

az can be interpreted as rider z’s velocity gain by unit of time spent helping

x > y. In words: i) requires that better leaders make better use of their helper’s time and
ability, ii) the ability of leaders and helpers are complementary and iii) the inefficiency
of helping someone else than oneself increases with ability. For the sake of expositional
simplicity, we present in this paper the special case where f(z,y) = f(y). Proofs of the
propositions in the general case are available upon request from the authors.

8Note that writing 2 = y + h, after some rewritting, the constraint becomes
M < a. This must hold for all h > 0 and all y € Z. Hence, by definition,

we have limy,_,q M =f'(y) <aforallyeZ.
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herself. Similarly, f(z) is the velocity gain by unit of time generated by a
rider of ability z when helping someone else. The difference f(z) — az is
therefore interpreted as the inefficiency, in velocity units, of helping someone
else than oneself. Assumption SA 1.3 requires that this inefficiency increases
with the ability of riders. Stated otherwise, Assumption SA 1.3 implies that
it becomes increasingly difficult to communicate the subtleties of the activity
with someone else.”

We assume that the demand for performance is exogenous to the model
so that velocity is priced exogenously in the market. Let p(v) be a continuous
and twice differentiable function mapping rider’s velocity v into money prizes.

Throughout this paper we maintain the following assumptions about the

reward function.

Condition 2 Standing Assumptions II (SA II, hereafter))

9To our knowledge, there is no evidence either theoretical or empirical about the shape
of this efficiency. However, a link exists with the psychology literature on the effect of
multitasking on productivity. —One may indeed think of helping someone else as mul-
titasking since it requires, in addition to the action of helping (thinking about how to
increase productivity), interacting and communicating with someone else.— In particular,
Rubinstein, Meyer and Evans (2001) show that agents lose time when they have to switch
from one task to another and that these "time costs" increase with the complexity of the
task. We thank Patricia Crifo for pointing out this literature.

12



2. Rewards p(.) are strictly increasing in velocity p/(z) > 0,
3. Rewards p(.) are convex in velocity, i.e. p’(z) > 0 for all z € Z,
4. 0 < p/(z) < oo for all 0 < z < 0.

Note that the assumption of convexity of the reward function is more
than supported by empirical data on the distribution of prizes by rank in the
final classification, see Figure 1.

Let Y, the surplus of a team, be given by the sum of all prizes won
by its riders. Formally, let Y (z;, 25, 5) = p(z + f(zn)s) + p(zn(1 — as)).*®
Let wp(zn,s) be the payoffs of a helper zj, providing helping time s and
let w;(z;,s) be the payoffs of a leader z; enjoying s helping time from her
helper. Without managers, total surplus is split among the riders so that

Y (21, 21, 8) = wi(zn, $) + wi(z, 8).

2.2 Feasible teams

Some general results about feasible teams are helpful to characterize the
equilibrium of this model. First, it can be shown that Proposition 3 is true

under SA I and SA II.

10Tt is interesting to note that the ability of riders are complementary in surplus if and

only if they help each other, i.e. 8?}2521 = p”f’s > 0 if and only if helping time s > 0.
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Proposition 3 Under SA I and SA II, the surplus of all feasible teams
(21,2n) € Z2%, with 2y > 2, is mazimized when z;, i.e. the most able rider,

becomes the leader and zy, i.e. the least able rider, becomes the helper.

Proof. See Appendix B =

The intuition is the following. From SA 1.3, ay — f(y) < ax — f(x) for
x > y. This means that the net gain of velocity in a team (y,x) is larger
if the best rider is re-assigned from being the helper to being the leader.
Hence, as long as rewards are convex as stated in SA I1.3, a team’s surplus is
greater when the less able rider helps the most able one. Denoting v(z;, 23)
the measure connecting helpers to leaders in equilibrium, from Proposition
3 we already know that dv(z;, z,) = 0 for 2z, < z,.

Another interesting pattern of the model is the strategy within teams.
How much help intensity to ask/offer? To answer this question, first note
that, within teams, riders will always choose s so as to maximize their team’s
surplus, i.e. s*(zj,2,) = argmax, Y (2, 21, s).!' The arguments of s* will be

dropped when unambiguous.

"Tndeed, suppose that both riders choose s # s*(z;, 2,) and that the helper receives
payoffs w{) and the leader payoffs w) = Y (2, 21, s")—w). Since by definition Y (z, 2, s°) <
Y (2, zn, $* (21, 21)), both riders could increase their team’s surplus by setting s = s*(z;, zp).
Splitting the additional surplus Y (z;, 21, s* (21, 21)) — Y (21, 21, s°) among them will increase
both riders’ payoffs. For all feasible teams, we therefore always have s = s*(z;, z3).

14



Under our standing assumptions, the following proposition shows that
the decision about how much helping time to provide simplifies considerably

for all feasible teams.

Proposition 4 Under SA I and SA II, for all feasible teams (2, z1,) € Z2,

with z; > zp, surplus Y (2, zn, ) is strictly convex in s such that s*(z;, zp) =

{1 Zﬁ Y(Zl,Zh,1)>Y(Zl,Zh,O)
0 otherwise :

Proof. See Appendix B =

Intuitively, the convexity of the reward function in assumption SA I1.3
carries on to the relationship between teams’ surplus and helping time as
long as helping time is efficient and a > 0 as in SA I.1. In other words, if p
is sufficiently convex given f and a, then for all feasible teams s*(z;, z;) = 1.
Reciprocally, if f is sufficiently small relative to a given p, then for all feasible
teams s*(z;, z,) = 0.

Finally, for notational convenience, since from Proposition 4, s* = 1 if
Y (21, 2n, 1) > Y (21, 2, 0) and 0 otherwise, we define Y1 (z;, z) = Y (2, 25, 1) =
p(zr + f(zn) + p(zn(l — a)) and Yo(zy,2n) = Y (21, 20,0) = p(21) + p(zn).
Similarly, let w;(z) = w;(z,1) for i = h,l, and wo(z) = w;(z,0) for ¢ = h,l
be the payoffs of individual riders. Note that wq(z) = p(z) independently of
the ability of her team mate.

15



2.3 Riders’ problem

Riders maximize their payoffs. The problem of a rider z is therefore to choose

the role (leader, helper or individual rider) that maximizes her payoffs:

max {w;(z),ws(2),p(2)} .

The leader’s problem is to find a helper z;, that maximizes her payoffs.
This problem reads as: max., [Y1(z;, zn) — wn(2n)]. The first order condition

to the leader’s problem yields:'?

wh(zn) = p'(z+ f(zn) f'(20) + (1 = a)p'(z(1 = a)) > 0. (1)

From our standing assumptions SA I and SA II we already know that
the equilibrium payoffs function for helpers is strictly increasing in helpers’
ability.'?

Symmetrically, the helper’s problem is to find a leader z; that maximizes

her payoffs. This problem reads as max,, [Y1 (2, zn) — wi(z)]. The first order

12We refer the reader to Appendix A for a formal presentation of the second order
conditions to the leader’s and helper’s optimization problem.

13As shown in Appendix A, the second order conditions to the riders’ problem also
indicates that the payoffs functions are strictly convex.
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condition to this problem is:

wi(z) = p'(z+ f(zn)) > 0. (2)

From our standing assumptions SA T and SA II, it follows that the equi-
librium payoffs function for leaders is strictly increasing in leaders’ ability.

The first order conditions pin down the slopes of the payoff functions. The
level of these two functions w;(z) and wy(z) together with the slopes will de-
termine the set of riders for which wy(2) = max {w;(2),wn(2),p(2)} (the set
of helpers), the set of riders for which w;(z) = max {w;(z), wx(2),p(z)} (the
set of leaders) and the set of riders for which p(z) = max {w;(2), wn(2),p(2)}

(the set of individual riders).

2.4 Equilibrium

Let L C Z be the set of leaders, H C Z the set of helpers and [ = Z\LUH C
Z the set of individual riders. Note that the sets H and L are endogenously
determined and not necessarily disjoint. This allows for the possibility that
at some ability level, riders might be indifferent between being a leader or a

helper.

17



Definition 5 A feasible assignment in this economy is a positive measure -y

on Z? such that:

[ aans [ diem) = due)vee
z2€Z

Zh€Z

Intuitively, [

ez d~y(z;, z) is the quantity of riders z that become helpers

while f

zZ

ez (2, ) is the quantity of riders 2 that become leaders. Let I'(1)

be the set of feasible measures ~ given pu.
Definition 6 An equilibrium in this economy consists of:

o two payoffs functions wy(z,) and w(z) and,

e a feasible assignment v and sets L C Z and H C Z such that: riders
choose a role (helper, leader or individual rider) and their eventual

leader or helper so as to maximize their own payoffs.

The following two propositions show important characteristics of the equi-

librium assignment.

Proposition 7 Under SA I and SA II, in equilibrium, more able leaders are

matched with more able helpers.

18



Proof. See Appendix B =
This result essentially follows from the convexity of the reward function

p and the fact that better helpers also happen to be better riders.

Proposition 8 Let z) be the ability of riders such that w;(z) = p(z®).
Under SA I and SA I, there is the following stratification in equilibrium: i)
there are no leaders of ability lower than 2z and ii) there are no individual

riders of ability higher than 2.

Proof. See Appendix B =

This type of stratification is much more general than the strict strati-
fication obtained in other models of organization. For instance, the model
developed by Rosen (1982) predicts that more able agents become managers
of less able ones (workers). Garicano and Rossi-Hansberg’s (2006) model
is a bit richer in terms of stratification as it allows for self-employed work-
ers. However, still the least able manager is more able than the most able
self-employed and the least able self-employed is more able than the most
able worker. The model presented in this paper offers a richer stratification
where, interestingly enough, some leaders could be of lower ability than some

helpers (of more able leaders), some individual riders could be of lower ability

19



than some helpers and at some ability level, some riders may become leaders,
others helpers.

Several special cases are worth noting. First, suppose that () > z.
In that case, all riders prefer riding individually than becoming a leader.
Since, there are no leaders there cannot be any helper either. All riders ride
individually. This case arises when p(.) is not convex enough given f(.) and
a.

Second, suppose that 2(!) < z. This means that all riders prefer becoming
a leader than riding individually. There are no individual riders.

Finally, as soon as z(!) < Z, there will be intervals of helpers and leaders.
In particular, a perfectly stratified equilibrium could arise. We could have
for instance riders of ability z € [g, z(h)) becoming individual riders, riders
z € [z, 2) becoming helpers and riders of ability z € [2(),Z] becoming
leaders. Similarly, we could have a stratification where riders of ability z €
[z, 2M) become helpers, riders of ability z € [z, 2()) become individual

riders and riders of ability z € [z(l),E] become leaders.

20



2.5 Existence and optimality

To study the properties of an equilibrium in this economy it is useful to
write the social planner’s problem (SPP) associated. Using that Yy(z, 2,) =

p(z1) + p(zx) and the constraint in Definition 5, this problem reads as:

SPP* = max / z)du(z —i—/ Yi(z, zn)dy(z, 2 } P1
o A [oeme+ [ eanea) @

We first show that an optimal solution (L, H, ) exists.

Proposition 9 Under SA I and SA 11, an optimal solution (L, H,~) to SPP

exrists.

Proof. See Appendix B =
Defining w := max{w;, wy } for notational convenience, the dual program

(D1) to the social planner’s problem is:

DpP* = Hgn/zw(z)dy(z) (D1)
s.t.
w(z) > p(z) for all z € Z(i)

w(z) +w(zw) > Yi(z,2) for all 2, 2, € 22 (ii)

21



Constraint i) in the dual program corresponds to the condition of individual
rationality (riders always have the option of remaining unmatched). Con-
straint ii) guarantees that an outcome is not blocked by any coalition. If ii)
is not satisfied, a pair z; and z, can always break up and reunite splitting
Yi(z, z,) in such a way that both are better off (z; gets more than w(z;)
and zj, gets more than w(z,)). Using constraint i) and ii), it is easy to see
that the weak duality inequality holds DP* > SPP*. Proposition 10 in fact

states that there is duality.
Proposition 10 Under SA I and SA II, there is duality, i.e. SPP* = DP*.

Proof. See Appendix B =

This result allows us to prove the following proposition.

Proposition 11 A feasible tuple ((wy, w;), (L, H,7y)) that solves both the pri-

mal and dual program maximizes riders payoffs.

Proof. See Appendix B =

A direct corollary of Proposition 11 is:

Corollary 12 The pair of payoffs functions (w;, wy) that mazimizes riders’

payoffs is Pareto Optimal.

Proof. See Appendix B =
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2.6 Comparative statics

Performance inequality will be lowest in autarky, measuring inequality by
the range. This result is obvious for two reasons. First, from Proposition
3, in a hierarchically organized team, the most able rider becomes leader
of the team. Second, from Proposition 8, riders at the top of the ability
distribution become either leaders or helpers. Combining these two results,
in an economy with hierarchical organization, the most able riders must
necessarily be leaders. The performance at the top of the distribution in
the economy with hierarchical organization must therefore be larger ceteris
paribus than in autraky. Similarly, from proposition 8, we know that riders
at the bottom of the distribution of ability either become a helper or ride
individually. Hence ,the performance at the bottom of the distribution of
ability is at most equal to that of a ceteris paribus same economy in autarky.
It follows that the range will be lowest in autarky ceteris paribus.

Without imposing further structure, the model also makes predictions
about payoffs inequality. Since the best riders become leaders and since
w;' > p' > 0 we know that payoffs inequality in the upper tail is larger in the
economy with hierarchical organization. We also know that the least able

riders either become individual riders or helpers. However, since, without
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more structure, we cannot conclude about the sign of w;: —p", we cannot
conclude about inequality in the lower tail.

Regarding the range of payoffs, if the least able rider is an individual
rider, we have w;(Z) > p(Z) and hence w;(Z) — p(z) > p(Z) — p(2) such that
the range must be lower in autarky. However, if the last rider is a helper,

we have wy(z) > p(z) and wi(Z) > p(Z), and we cannot conclude about

wi(Z) —wi(2) S p(2) — p(2).

3 Empirical evidence

3.1 Organization in road cycling

Testing the predictions of our model requires at the minimum to have access
to data about an industry where helper-leader relationships exist (condition
1). Measuring the impact of hierarchical organization on performance in-
equality in the industry requires in addition that i) the performance v(z)
is measured at the individual level (condition 2), ii) the industry has expe-
rienced a change in the incentives to organize hierarchically within teams
(condition 3) and, iii) a measure of the extent of hierarchical organization

within teams is available (condition 4). Road cycling constitutes a rare case
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where these 4 requirements are satisfied.
Condition 1: helper-leader relationship.

Road cycling racing ¢s an individual sport where the first to cross the
finish line wins. However, unlike most individual sports, road cycling riders
have traditionally been grouped into teams. Teams’ tactics (organization)
has become an important aspect of the sport. Tactics turns out to be inherent
in this sport since the aerodynamic benefit of drafting, following as closely as
possible the slipstream of the rider in front, can save as much as 40% of the
energy compared to riding alone. Some teams therefore designate a leader
and have the remaining riders serve as a “wind shield” for their leader to spare
energy until critical moments of the race (final climb during a mountain stage
for instance). Helpers also play the role of a “donkey” during races, carrying
food and water to their leader, or exchange their wheels or even bike in case
of a mechanical problem of their leader during the course. This hierarchical
organization is especially important during stage races, among which The

Tour de France constitutes the event of the year.!

14See McGann and McGann (2006) for a detailed account of the history of the Tour de
France.

In 2008, the winner of the Tour de France received €450,000 in prize money or 5 times
more than the winner of the Giro (€90,000). That year, the total prize money distrib-
uted on the Tour de France amounted to €3,269,760 or 2.4 times more than on the Giro
(€1,380,010).
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Condition 2: measure of individual performance.

The performance of each rider v(z) is readily measured by his average
velocity defined as the total distance of the event divided by his finishing
time.

Condition 3: change in organizational incentives.

It is worth noting that since the end of the 1960s, several developments
indicate that teams participating at the Tour de France have progressively
become more hierachically organized, respecting hence condition 3.

First, the Tour de France has moved from national to trade teams at
the end of the 1960s. Initially, the Tour was opened to all riders and most
of them were enrolled in trade teams. However, the organizer of the Tour,
Henri Desgrange, insisted that while riders could compete in the name of
their sponsors, no cooperation or tactics would be allowed between these
riders. However, in 1929, the Belgian rider Maurice De Waele won the Tour
with the “illegal” help of his team mates even though he was ill. This event
marked Henri Desgrange: “My Tour has been won by a corpse,” and led him
to deny participation to trade teams. Only national and regional teams were
allowed from 1930 until 1961. The hierarchical organization within teams

became more difficult since most riders belonged to rival trade teams for the
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rest of the season. The loyalty of riders was sometimes questionable, within
and between teams, leading to an inefficient organization as can testimony
several famous events.'® Under the pressure of sponsors that paid the salaries
of riders the whole year long but were denied publicity from the season’s
major event,'® the organizers decided to come back to trade teams by the
end of the 1960s for good.

Second, the media exposure of the Tour de France has grown ever since
and so have the stakes. Figure 2 shows the evolution of the total prize money,
corrected for inflation, distributed on the Tour since 1950. The total prize
money were roughly steady from 1950 to 1971 and started increasing ever
since, at 3% per year between 1971 and 1985 and 5% thereafter.

Third, we observe a convexification of the payoffs by rank. As shown in
Figure 3, the average share of prizes allocated to the winner was about 4.5%
between 1950 and 1975. It increased to an average of 6.8% between 1975 and

1985. Since 1985, the winner goes home with about 15% of the total amount

15In 1959, the French team was made up of many strong riders such as Raphagl Gémini-
ani, Henri Anglade and Jacques Anquetil. The French team was full of internal rivalries.
Part of team decided to help spanish rider Federico Bahamontes win rather than Henri
Anglade in the hope to win more fees during the post-Tour criteriums as Bahamontes was
a much poorer rider on flat closed circuits than Anglade.

16Trades were partly accommodated for with the authorization for the riders to put
their respective trades name on their jersey and the introduction of the Caravan. The
Caravan consists in a trade parade preceding the riders during the Tour de France. This
caravan is praised by the spectators and reached an height between the 30s and the 60s.
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of money prizes distributed during the Tour de France.!” A prediction of our
model is that a convexification of the payoffs function p(.) leads to greater
incentives to organize teams hierarchically.
Condition 4: measures of the extent of hierarchical organization within teams.
A key element of the Tour de France to measure the extent of hierar-
chical organization, is that a few of the 20 stages that determine the final
classification are individual time trials. An individual time trial is a stage
during which riders ride alone against the clock. There is no help possible
between riders during such a stage such that s = 0 for all teams during these
stages. This means that the velocity of a rider during such a stage reflects
his true individual ability.'® It follows that the difference in velocity between
the leader of a team and his helpers during an individual time trial reflects a

team composition effect, i.e. the pure ability differences between riders. This

17Tt should be noted that the prizes won by each rider of a team are usually pooled
together and redistributed within the team.

18Tt might be argued that helpers will put on less effort during a long individual time
trial to save energy for helping their leader in the next stages. Fortunately, since 1970,
most Tours started with a short individual time trial, i.e. the Prologue. Compared to
other individual time trials that generally last between 45 to 60 minutes and occur after
several stages, the Prologue is a short effort of about 10 to 15 minutes that occurs before
any other stages. This means that riders are fresh from the start and recover rapidly
from their efforts during the Prologue. Furthermore, the stages following the Prologue
are generally flat stages ending with a massive sprint so that the amount of helping time
devoted by helpers of final classification riders is limited during the stages following the
Prologue. Hence, in contrast to other individual time trials, during the Prologue, riders
have no incentives not to perform at their best, and for each rider the measured velocity
during the Prologue reveals the true ability of riders v(z) = z.
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contrasts with the velocity difference in the final classification that reflects
both the composition of the team and the hierarchical organization. Under
plausible assumptions presented in the next section, results from individual
time trials, and in particular the Prologue, enable us to identify the team

composition effect and hence derive a measure of help intensity within team.

3.2 Methodology

The empirical strategy is broken down into two steps. In the first step,
we identify the help intensity for each team and each Tour using data at the
rider’s level, and in particular the velocity of riders i) in the final classification
of the Tour de France and ii) in the Prologue. In the second step, we use
features of the distribution of help intensity to explain the evolution of overall

performance inequality over time.

3.2.1 First step: Identification of helping intensity

In contrast to the setting of our model where teams are composed of one
leader and one helper, in the Tour de France, each team is composed of 9

riders. Hence, a leader potentially receives the help of eight helpers.!? Using

YFrom 1970 up until 1985, there were 10 riders in each team at the start of the Tour
except for 1972 and 1973 where each team was composed of 11 riders. Since 1986, there

29



the terminology of our model, a leader [ has velocity given by v(z) = 2 +
Zizl si, f(z;,) where 7; indexes the helpers of leader [. Similarly, the velocity
of each helper i; is given as: v(z;,) = z;, — as;,2;,. The average velocity of the
helpers of leader [ is then given as: v; = %Zi=1 v(z,) =7 — %Zi:l Si,%i,
where Z; = % Zi:l z;, is the average ability of the helpers of leader /.

Let r; = v(z;) — v, measure the within team velocity inequality in leader’s [
team. Note that r, = ¢;+h; where ¢; = [z — Z;] and b, = [Zzzl Si) (%zil + f(z”))]
This measure of within team inequality is decomposed into two terms: the

t2° ¢; that captures the difference in ability between

team composition effec
leader [ and his “average” helper and the help intensity effect h; that captures
the extent of hierarchical organization within team.

Unfortunately, neither ¢; nor h; are directly measured in the data. How-

ever, as argued in Condition 4 above, during the prologue, s; = 0 for all i,

and all [. Denoting 2] the ability of rider i at the Prologue and v{ = v(z?) his

are 9 riders by team.

20Broadly speaking, there are four “ability types” of riders participating at the Tour
de France. Besides leaders that perform very well allround, there are sprinters that are
(very) good at short time trials but (very) bad at mountain stages, “rouleurs” that are good
allround and climbers that are very good at mountain stages but mediocre at (short) time
trials. This means that swapping one ability type for another within team will generally
have consequences both for the inequality in the final classification AND the Prologue.
We exploit this relationship below in the identification of help intensity. In the robustness
checks we also perform the same analysis but excluding sprinters (that are relatively easy
to identify in the data) to further account for the composition effect.
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velocity, this means that v(z!) = 2! for all 7. It follows that the within team
inequality at the Prologue reads as r] = 2z — Zz] = ¢} for a team [. Since the
ability required to perform well at the Prologue might only be a subset of the
abilities required to perform well in the final classification, rather than using
rf’ as a proxy for ¢; and deriving h; as r; — cf’ , we assume that ¢; is linearly
correlated with ¢ = ] and, hy is orthogonal to ). We therefore identify A,
as the residuals of an orthogonal projection of r; onto 7. Indexing time by

t, we have:

e = &g + &1y + e (3)

By construction, the residuals e;; of this equation are orthogonal to 7}, =
2y, — Zy. For each team [ in every Tour ¢ we identify the help intensity by as

€l
3.2.2 Second step: Estimation of the effect of help intensity on
overall performance inequality

Let R; be a measure of the overall performance inequality during Tour ¢. We
use two measures of help intensity to explain the evolution of R; over time.

The first measure is the average help intensity at Tour ¢, say e; = N% > €u

31



where NV, is the number of teams at Tour ¢. The second measure is the range
in the help intensity defined as r{ = max; e;; — min; e;;. We then consider the

following equation:

/
Rt =g t+ are + OéQTf + O{3Xt + Uy,

where R; is either proxied by the range, the reduced range, the lower range
or the upper range in the final classification depending on the specification
of the model and X, are control variables. u; are i.i.d. residuals.

The parameters a; and as are the parameters of interest that relate the
evolution of the distribution of help intensity (mean and range across teams)

to the overall inequality. We also consider the following control variables:

1. 4 measures of internationalization:

(a) The percentage of riders from the core?! countries (1-globalization),
(b) the percentage of riders from France (%French),
(c) the percentage of riders from Italy (%Italian) and,

(d) the percentage of riders from Spain (%Spanish),

21 Belgium, the Netherlands, Luxembourg and Switzerland.
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2. a time trend that captures technological development in a wide sense:
let it be the type of bicycle and gear used, training methods, nutrition

(including doping) etc.,

3. the difficulty of a particular Tour: we use as proxy the failing rate, i.e.

the percentage of riders finishing.??

3.3 Data

For the empirical exercise, our main source of data is from http: //www.tour-
giro-vuelta.net/, a website managed by Michiel van Lonkhuyzen and data
from http://www.letour.fr/HISTO/fr/TDF/. To correct for eventual mis-
takes and/or omission (a few distances and winning times), we cross checked
between these two datasets but also with additional sources and in par-
ticular with Wikipedia for the total distance and the winning time and,
http://www.ledicodutour.com/ and http://www.memoire-du-cyclisme.net for
the general classification of the tour de France. Our database covers the Tour
de France between 1947 and 2011.

For each participant appearing in the final classification of any Tour,

22We have also experimented with the direction of the tour de France (Pyrenees before
or after the Alps) and the percentage of riders participating for the first time but this does
not change the results.

33



we calculate two velocity measures: i) the Tour velocity, defined as the total
distance of the tour divided by the participant’s finishing time, for the period
1947-2011 and ii) the Prologue velocity defined as the distance of the Prologue
divided by the participant’s finishing time at the Prologue, available since
the first Prologue in 1970 except for the Tours without Prologue, i.e. 1971,
1979, 1986, 1988, 2008 and 2011.
Overall Inequality

Our data enable us to derive a distribution of the Tour velocity for each
Tour as well as its associated measures of inequality. In particular, we con-
sider the range (velocity of the winner - velocity of the last rider) that con-
stitutes an efficient estimate of inequality at time t (Parkinson, 1980).%3 For
robustness purposes we also consider the range at specific parts of the distri-
bution. The reduced range, defined as the difference between the inequality
of the top and bottom 5% riders, is considered in order to control for ex-
treme behavior: the high inequality observed in some years could be due to
exceptional cluster of gifted riders such as the couple Hinault and Lemond
in 80’s or Armstrong and Ulrich in the early 2000’s. Similarly, asymmetric

ranges (upper and lower) are introduced to disentangle the factors affecting

- 2
23 More precisely he showed that 4113% converges to the spot volatility at time t.
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the leaders and the helpers. These fours variables (range, restricted range,
upper range and lower range) constitute the dependent inequality variables
to be explained.

Figures 4 shows the evolution of the Tour velocity distribution over time.
The figure clearly indicates a surge in inequality, represented here by the
range of the Tour velocity distribution. This movement appears at the end
of the 1960s. It is noticeable that this inflection turns out to be synchronous
to the authorization of trade teams to participate and the increase in the
prize money distributed.

To have a better insight of this remarkable development, we have also
represented in Figure 5 the evolution of the Tour velocity density over time
and in Figure 6 the evolution of the cumulative distribution of Tour velocity.
Interestingly enough, it appears in Figure 5 that the higher Tour velocity
inequality takes the form of a progressive modification of the shape of the
distribution. While it was unimodal for the 1950s and 1960s, it progressively
moves to a bimodal shape from the 1970s on. This indicates that a small
group of top riders have improved their Tour velocity (relative to the con-
temporaneous mean Tour velocity) while the bulk of the riders have seen

their performance deteriorate. Hence the inequality within the peloton is
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rising but in a very peculiar way. Figure 6 confirms this?** but also informs
us about the proportion of riders that have increased their performance rel-
ative to the contemporaneous mean overall velocity. This part can be found
as the fixed point of the CDF and roughly corresponds to 0.6 — 0.7. This
means that 30 — 40% of the riders improved their performances relative to
the contemporaneous mean.

Figures 5 and 6 clearly indicate that inequality has strongly increased in
the peloton of the Tour de France since the end of 1960s. Our intuition is
that the modification of the organization of teams, for the reasons listed in
Condition 3 above, impacted positively the inequality.

Within team inequality

We identify the leader of each team as the rider with the highest Tour

velocity. Within each team, the remaining riders that finish the Tour are then

considered as the helpers. The within team inequality between the leader and

1 Nl—l

his helpers is given as r; = v(z) — 5 22,1, v(2;,) where Ny is the number

riders of team [ that finished the Tour.2®

24The twist of the cumulative distribution over time indicates the movement towards
bimodality.

25Since 1970, on average, 30% of the riders does not finish the Tour. For the vast
majority of these riders, the reason for not finishing is either a fall or sickness. We therefore
herewith make the implicit assumption that the riders that do not finish the Tour were
randomly drawn from the distribution of riders. Note however, that we control for the
failing rate in our empirical analyses below.
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Figure 7 shows the evolution of both the average within team inequality
in the final classification, i.e. 7, = N% Zf\ﬁl ri, and at the Prologue 7 =
N% lN:tl rh,. Strikingly, the within team inequality at the Prologue is fairly
stable over time. This supports the idea that changes in the composition
of teams over time, if they actually have occurred, have not affected the
inequality within team. In contrast, the within team inequality in the final
classification follows the same general pattern as the overall inequality in
the final classification. These two pieces of information together support the

idea that the within team inequality is primarily driven by the rise in help

intensity within team.

3.4 Results

We first present in Table 1 the results of an Ordinary Least Squares (OLS)
estimation of Equation 3. The table indicates that the relationship between
the within team inequality in the final classification and the within team
inequality at the Prologue is positive and significant at 5%. The magnitude
of the coefficient is economically very important. A 1km/h higher inequality
at the Prologue is associated with a 0.03km/h higher inequality in the final

classification. Stated otherwise, a leader that is 14 seconds faster at the
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Prologue than his “average” helper is 4 minutes and 12 seconds faster in the
final classification, ceteris paribus (without any organization within team).

Figure 8 clearly shows that the average help intensity has increased over
time following a similar pattern as the average within team inequality in
the final classification. As shown in Table 2, simple OLS regressions of the
average help intensity on the (deflated) money prices allocated to the winner
of the Tour or its share in total money prices distributed during the Tour,
clearly indicate that our measure of help intensity is significantly related
with variables that are, according to our model’s predictions, linked to the
incentives to organize hierarchically within teams. In fact, these two variables
alone explain about 57% and 15% respectively of the variance in our measure
of help intensity over time.

Second, we present the results of OLS regressions of measures of overall
performance inequaltiy on features of the distribution of help intensity in
Table 3. The R-squared providing information on the quality of the regres-

sions are extremely high (between 70% and 90%) for all measures of overall

inequality. Our set of variables seems to constitute an adequate space to

26 A typical Prologue is 10km long and covered in about 12 minutes (50km/h). A typical
Tour de France is about 3,500km long and covered at an average velocity of about 39km /h.
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analyze the inequality.?” More importantly, the signs of the estimators are
in line with our theoretical model. For all measures of overall inequality con-
sidered, our measure of help intensity has a positive impact, significant at
1%. This result provides a strong support for hierarchical organization as an
explanation for the rise in performance inequality among riders in the Tour
de France. Another remarkable result is that not only the sign but also the
magnitude of the elasticity is robust to our choice of inequality measure,?®
ranging from 0.83 to 1.03. Our estimates indicate that an increase of help
intensity leading to an increase of 1km/h in the velocity of a leader relative
to that of his (average) helper leads to an increase of about lkm/h in the
overall inequality.

Regarding the other candidates, we notice that only the between team
inequality in help intensity is (weakly) significant and with the correct sign.

All other variables are statistically insignificant. To summarize our results,

it appears that hierarchical organization is the key variable that explains the

2TNote that misspecification tests for autocorrelation (LM of Godfrey, 1978), het-
eroscedasticity (Breusch-Pagan, 1979), normality (Jarque and Bera, 1980) and structural
break (Chow test with an unknown break date a la Andrews, 1993) are performed and
support the idea of a correct specification. Finally, the presence of a unit root has been
tested for each endogenous variable and rejected. All the tests are available upon request
from the authors.

281t is noticeable that a simple t-test would lead to not reject the equality between these
coefficients.
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rise in productivity inequality in the Tour de France.

3.5 Robustness Check

To assess the robustness of our findings, two types of analyses are performed.
First, we investigate further the effect of team composition on our results.
Second, we confront another prediction of the model with an additional styl-

ized fact of the evolution of the distribution of performance.

3.5.1 Stability of the relationship between hierarchical organiza-

tion and overall performance inequality

We consider controlling further for the team composition effect by excluding
sprinters from the analysis. To flag sprinters, we collected additional infor-
mation about the classification of riders during a stage that ended with a
massive sprint. We then labeled “sprinter” every rider that i) finished within
the 20 best riders during the sprint and ii) did not finish within the 20 best
riders in the final classification. Having flagged sprinters, we run our two-step
procedure excluding sprinters.

The results of the first and second step regressions are reported in Table

4. The table clearly indicates that both the coefficients of the first and second
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step are of similar magnitude to the one presented in Table 3. This means
that controlling further for the team composition effect by excluding sprinters

from the sample does not affect the results.

3.5.2 Can the model reproduce the stylized facts?

To further evaluate the empirical prediction of the model, we propose the
following test. Consider NV teams and suppose that each team has only one
leader and all 9 riders of each team finish the tour. We also assume that
initially, riders are assigned at random to teams and help intensity is zero for
every riders (autarky). This means that the final classification reflects the
true distribution of ability. In particular, the velocity of the N rider rela-
tive to that of the N + 1" rider reflects their ability differential. Following,
for instance, a convexification of the reward function, suppose that the new
equilibrium exhibits a strict stratification of riders: all N leaders are strictly
better than any of the 8 x N helpers. In the final classification, the first
riders are the leaders of the various teams and the last 8 x N riders are their
helpers (or riders riding individually). The performance of all leaders in-
creases while the performance of all helpers decreases holding everything else

constant. The model has three important predictions. First, the within team
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inequality increases in all teams. Second, the overall inequality increases too.
Third and most importantly, the performance of the N rider (the least able
leader) increases while the performance of the N + 1" rider (the best helper)
decreases. This means that at constant distribution of ability, we should
observe a movement of riders above the 100 x (1 — %) = 100 x g ~ 90"
quantile away from riders below the 90" quantile.

Figure 6 clearly shows that the distribution becomes more unequal over
time but it is striking to see that all curves seem to be twisting clock wise with
a twisting point at the 60" quantile. Although this sketchy model predictes
a twist at the 90" quantile, one should bear in mind that 1) we have assumed
a strict stratification which is only a special case in the economy depicted in
Section 2 and 2) the model depicts economies without performance shocks
(no sickness during the tour, no falls, no exclusion for doping etc.) and with
perfect information about the ability for all riders. With this in mind, we
take the results presented in Figure 6 as supporting our hypothesis that the

increase in the performance inequality is primarily due to an increase in the

hierarchical organization of teams (via help intensity).
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4 Discussion

This paper investigates the relationship between hierarchical organization
and performance inequality within and between organizations. An equilib-
rium theory of the organization of work in an economy with an implicit
market for productive time is first presented. In this economy, agents have
limited productive time and can choose to produce in autarky, buy produc-
tive time from helpers to increase own production or, sell their productive
time to a leader and thereby give up own production. This implicit market
gives rise to the formation of teams, organized in hierarchies with one leader
at the top and helpers below. We prove that an equilibrium exists and is
efficient and show that relative to autarky, hierarchical organization leads to
higher within and between team payoffs/productivity inequality.

To illustrate the main prediction of our theoretical model, i.e. team orga-
nization increases performance inequality, we propose an empirical analysis
in the context of professional road cycling. Considering such a framework
is novel in this literature and has several key advantages compared to other
markets to study the existence of an implicit market for productive time.
These three key advantages are i) road cycling exhibits a clear change in the

incentives to organize work within team since the end of the 1960’s, ii) a
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direct measure of individual productivity is available in that sector via rid-
ers’ velocity and iii) results from individual time trials enable us to identify
the composition of team and hence derive a measure of help intensity. Re-
sults of performance inequality regressions robustly show that leaders’ veloc-
ity increased significantly (economically and statistically) more than that of
helpers because of the increasing help intensity within teams. This supports
hence the model’s prediction of a positive relationship between hierarchical
organization and productivity inequality.

Although the core model developed in the paper relies on some of the
characteristics of professional road cycling, we believe this core model con-
stitutes an adequate corpus to analyze the relationship between earnings
inequality and hierarchical organization of firms in many other industries.
Several extensions may be proposed in the future to make it fit with other
industries. First, in the core theoretical model presented in this paper, the
size of teams is fixed exogenously following hence the rule that applies in
professional road cycling. It is obvious that such an hypothesis does not
hold in other organizations. For example a law firm can engage as many
collaborators as possible to help a leading lawyer prepare for a trial. Law

firms can to some extent adjust not only the intensive but also the extensive
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margin of organizational structure. Second, the core model considers a single
event (the Tour de France). Though the Tour de France is the single most
important event of the season, teams usually engage in many other events
(such as the classics and shorter tours). The hierarchical organization of a
team may thus vary in function of the race: helpers during major races may
be leaders during minor races and vice versa. Interestingly enough, this dy-
namic organization can be perceived as part of the compensation offered by
the leaders (during major events) to their helpers. Modelling this dynamic
organization of team seems particularly interesting. Third, the core model
presented in this paper excludes any role for team managers. One may think
of several interesting ways of including managers into the model. One way
would be to assume that managers improve teams’ performance. Another,
perhaps more interesting, extension would be to incorporate the strategic
role played by managers when performance outcome is uncertain. Finally,
applying the model to segments of the labor market raises the question of
the interpretation of the pricing function p(.). These various extensions do
not minimize the importance of the core model presented in the paper, they

rather highlight its importance in this literature.
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Appendix A: Second order conditions:

The second order condition to the leader’s problem reads as:

wi(z) > p (a4 f() (F(2)* + 0 (2 + Fz)f (zn) + (1= a)’p" (zn(1 — €)
if 0 < p(z + f(z)) — p(2) — p(zn) + p(2n(1 — a))
and

wy(z) > p"(z1) > 0 otherwise.

Similarly, the second order condition to the helper’s problem reads as:

wi(z)) > p'(z+ f(zn)) (5)
if v(z + f(z)) —p(2) > p(2n) — p(2n(1 = a))

and

"

wy(z1) —p"(z1) > 0 otherwise.

An important remark is that our standing assumptions SAI and SAII
imply that w(z;) > 0 for ¢ = [, h so that equilibrium payoffs functions are

convex.
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Appendix B: Proofs of propositions

We first prove Lemma 13 that will be used in the proof of Proposition 3.

Lemma 13 Under SA II, we have p(xs + Ay) — p(x2) > p(x1 + Ay) — p(aq)

for all xo > x1 >0 and Ay > Ay > 0.

Proof. Since from SAI1.2, p’(z) > 0 for all z > 0, it follows that p(xe+Ay) >
p(za + Ay) for all Ay > Ay > 0.

It remains to show that p(za + A1) — p(x2) > p(z1 + A1) — p(z4) for all
T9 > x; > 0and Ay > 0.

Write ga(z) = p(z + A) — p(z) with A > 0. By definition we have
gaz) =p'(x +A) = p'(z).

Since p” > 0 from SA IL.3, p/ is increasing over x so that g (z) = p/(z +
A) —p'(z) > 0. It follows that ga,(z2) = p(z2 + A1) — p(z2) > p(a + Ay) —

p(z1) = ga,(z1) for o > 1. =
Proof of proposition 3: More able riders become leaders.

Proof. Take a team of riders with respective ability = and y with x > y
without loss of generality. This team’s surplus is Y (z,y) = max,p(z +

f(y)s)+p(y(1—as)) when x is the leader and Y (y, ) = max, p(y + f(x)s) +

52



p(z(1—as)) when y is the leader. To prove that = will always be the leader we
need to prove that Y (z,y) > Y (y, ). Denote s° = s*(y,z) = arg max, p(y +
f(z)s) + p(z(1 — as)) and denote s' = s*(x,y) = argmax, p(z + f(y)s) +

p(y(1 — as)). By definition we have:

Y(z,y) =plx+ f(y)s") + py(1 —as’)) > pla + f(y)s°) + p(y(1 — as’)).

Hence, it is enough to prove that p(z + f(y)s°) + p(y(1 — as®)) > p(y +
f(2)s°) + p(z(1 — as®)) for all 1 > s® > 0. Rearranging terms, we aim at

proving that the following inequality holds for all s® and = > ¥:

plz+ f()s°) — ply + f(2)s°) > p(z(1 —as”)) — p(y(1 — as®)).  (6)

Write 71 = y(1 — as®) and z; + Ay = z(1 — as®) where A} = v —y +
as’(y — z) and zy = y + f(2)s® and 2o + Ay = = + f(y)s® where Ay =
r—y+s°f(y) — f(x)). Note that zo > x; for all y € Z and s° € [0,1].

Inequality 6 can be written as:

p(ra + Ag) — p(z2) > p(ay + Ay) — p(xy) with zo > 2.
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Following Lemma 13, a sufficient condition for this inequality to hold is
As > Ay. Replacing A; and A, by their expression in terms of x and y and

rearranging yields:

Ay > Ay & alr —y) > fz) — f(y).

Hence, from SA 1.2 we have p(z+ f(y)s?) +p(y(1—as®)) > p(y+ f(z)s")+
p(x(1 —as®)) for all s° and x > y. This means that Y (z,y) > Y (y, x) for all
x > y. The surplus of a team is therefore always higher when the most able

rider is helped by the least able one. m

Proof of Proposition 4: conditions for a corner solution of s*(z,y).

We first prove Lemma 14 that will be used to prove Proposition 4.

Lemma 14 Under SA I and SA II, for all feasible teams (2, z,) € Z2, the
surplus function Y (z, zn, ) is a strictly convex function of helping time on

s €[0,1].

Proof. Take a team of riders with respective ability x and y and with
x > y without loss of generality. From Proposition 3, rider x becomes the

leader and rider y the helper. This team’s surplus is therefore Y (z,y, s) =
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p(z+ f(y)s) +p(y(1 —as)). The slope of the surplus with respect to helping
time obtains as:

oY (x,y, s)

Os =p(x+ f(y)s)f(y) — P (y(1 — as))ay.

The curvature of the surplus with respect to helping time is given by:

Y (z,y, s)

o =0 @+ f©)s) (F)’ + 9 (1~ a9)) (ay)”.

From SA 1.1 and SA II.3, we have % > (0. The surplus function

Y (z,y,s) is strictly convex on s € [0,1]. m

We can now prove Proposition 4.
Proof. Take a team of riders with respective ability = and y with x > y
without loss of generality. From proposition 3, rider = becomes the leader
and rider y the helper. This team has surplus equal to Y (z,y,s) = p(x +
f(v)s) +p(y(1 — as)). From Lemma 13, we know that Y (x,y, s) is strictly
convex in s on s € [0, 1] for all z and y. This means that:

1iff Y(z,y,1) > Y(z,y,0)
0 otherwise

s"(z,y) = {
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Using the definition of Y and rearranging yields:

Liff p(z + f(y)) — p(z) > p(y) — p(y(1 — a))
0 otherwise )

s*(z,y) = {

Proof of Proposition 7: Under SA I and SA II, in equilibrium, more able

leaders are matched with more able helpers.

Proof. By the implicit function theorem, write z;, = z,(2;) the solution of
Equation 1 and z; = z/(z;,) the solution of Equation 2.
First, suppose that z,(z) and z/(z,) are differentiable. Then, totally
differentiating Equation 1 with respect to z; and Equation 2 with respect to
zp, and rearranging yields:
iy = HCESIENJENE ,, |
wy(zn) =P (24 f(2n)) (f'(20))" + 0 (20 + f(20)) " (z0) + (1 = a)?p" (2(1 — a))

"

P (Zl) _ p (’Zl + f(Zh)) f/(Zh)
" wi'(z1) = p" (2 + f(zn))

From the second order conditions in Equations 4 and 5, the denominators
are strictly positive. Hence, () > 0 since p" (2 + f(zn(20))) f' (z1(2)) > 0

from SA 1.3 and SA IL.3 and z/(z,)) > 0 since p" (z(z1) + f(z1))f"(z1) > 0
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from SA 1.3 and SA II.3.

Suppose now that z,(z;) and z/(z;,) are not differentiable. We can still
prove that in equilibrium, more able leaders get more able helpers. Take two
teams that arise in equilibrium say (x;,v;), i = 0,1 where x; is the ability of
the leader and y; the ability her helper. Without loss of generality, suppose
that 1 = z¢g + h with A > 0. From the second order conditions in Equations
4 and 5, we know that the wage profiles are steeper than the productivity

profiles. Formally, and using the helper’s problem for instance, we have that:

i 200 Z O] ) 5 ) = iy 0 R S0 Z 0 Tn))

h—0 h h—0 h
Using the first order condition in Equation 2 to replace wj(.) obtains:

lim p'(zo+h+ f(y1) — P (w0 + f(yo)) > lim p'(zo+h+ f(yo)) — P'(wo + f(y0))

h—0 h h—0 h

=

Y1 > Yo.

It follows that in equilibrium, more able leaders are matched with more

able helpers. m
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Proof of Proposition 8: Under SA I and SA II, in equilibrium, no riders of
ability lower than z() become leaders and no riders of ability higher than ()

rider on their own.

Proof. Take any rider of ability z € Z. The payoffs of this rider are w;(z)
as a leader, wy(z) as a helper and wy(z) = p(z) as an individual rider. A
payoffs maximizing rider will therefore choose the role leading to W(z) =
max {w;(z), w(2),p(z)}. We are looking for the upper envelop W (z) of the
graph of payoffs {w;(2),wn(2),p(2)} in 2.

Without further restrictions, we already know from the first order con-
ditions that leaders’ payoffs function w;(z) is strictly steeper than that of
individual riders p(z), i.e. wj(z) = p'(z + f(zn)) > p'(z) from SA II. Let
2} be the ability of riders so that w;(2)) = p(z®). This implies that
wy(z) < p(z) < W(z) for all z < 2 and W(z) > w(z) > p(z) for all
2z > 2. Tt follows that in equilibrium, there are no leaders of ability lower
than 2 and no individual riders of ability higher than 2. Stated other-
wise, riders of ability lower than z() either become a helper or an individual
rider, i.e. w;(z) < W(z) for all z < z), while riders of ability higher than

2() either become a helper or a leader, i.e. wy(z) < W(z) for all z > z(). =
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Proof of Proposition 9: Under SA I and SA II, an optimal assignment

(L, H,~) exists.

Proof. Sketch of the proof.?? Step 1: We follow Chiappori, Galichon and
Salanie (2011) and show that the social planner problem SPP can be writ-
ten as the primal program of a classical Monge-Kantorovich problem with
symmetric surplus function. Step 2: We then derive the properties of our
model from the properties of the Monge-Kantorovich problem that have been
studied in Villani (2009).

Step 1: Consider a pair of riders (z,y) such that dv(z,y) + dy(y,x) > 0.
Without loss of generality, suppose that Y;(z,y) > Yi(y, z). The contribution
of this pair to program (P1) would be largest when dvy(z,y) > dvy(y,z) = 0.
This means that a solution v for SPP is necessarily such that dv(z, z;) >
dvy(zn,z) = 0 whenever Yi(z;,2,) = max (Yi(z;, 21); Y1(zn, 21)). The con-
tribution of a pair (z;, z,) so that Yi(z;, z,) = max (Y1(z, zn); Yi(zn, 21)) is

therefore

Yi(z1, 2n)dy (21, 2n) + Ya(zn, 20)dy (20, 21) = Y (21, 2n)dy (215 21).

29 An alternative proof of existence is to show that I'(u) is tight, hence compact by
Prokhorov’s Theorem. Since Y; is continuous, there exists a solution 7 of (P1). This proof
is available from the authors upon request.
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Define Yy (21, 1) = max (Y1 (21, 21.); Yi (21, 21)) and let d3(21, 21) == d3 (2, 21) =

dy(zl’zh);dy(zh’zl). Obviously, since Y; is symmetric, we have that:

Y1 (21, 20)d3 (21, 20) Y1 (20, 2) A7 (20, 21) = iz, 20)dy (21 20) Y1 (20, 20)dy (20, 2).-

Note that 7, not only is symmetric, but also satisfies the feasibility con-
straint of Definition 5. For symmetric measures, these constraints can be

re-written as:

/ i) = dule) (@)
[ dm) = gdu) 0

dy(z1,zn) = d¥(zn, 2) ().

Let f(% 11, +11) be the set of measures 7 satisfying constraints (a), (b) and

(c). Program (P1) is therefore equivalent to program (P2) below:

SPP* = max {/ p(2)du(z) +/ 371(31, 2n)dy (1, Zh)} :
(L.H)ez? el (3 p,2p) \J2\LUuH LxH

(P2)
Define program (P2’) as the same maximization as in program (P2) but

without constraint (c) and let SP Py, be its value. Note that program (P2’)
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reads as the primal program of a Monge-Kantorovich transportation problem
with symmetric surplus. Theorem 4.1 in Villani (2009) asserts that there
exists a solution, say %, to (P2’) since Y, is upper-semicontinuous. It is now

is also a solution

easy to see that 7 defined by d¥(z;, zp,) := dﬁ(z”zh);dﬁ(zh’zl)

of (P2’) and satisfies constraint (c) so that it is a solution of (P2). It follows
that v defined by** dvy(z;,21) = {2%(‘”’%) if}g(czléfh):ﬁ(z“zh) is a solution of
(P1). We conclude that there exists a solution to (P1). As a by-product we

have also shown that SPP* = SPPj,. This last result will be used in the

proof of Proposition 10 below. m

Proof of proposition 10: Under SA T and SA II, there is duality, i.e. SPP* =

DP*.

Proof. Sketch of the proof: Step 1: In the proof of Proposition 9, following
Chiappori, Galichon and Salanie (2011), we have shown that the social plan-
ner problem can be re-written as the primal program of a classical Monge-
Kantorovich problem with symmetric surplus function. The value of the two
programs are equal, i.e. SPP* = SPPj; . Step 2: We proceed in a similar

fashion and show that the dual of the social planner program can be re-

30Tn case Y1 (21, 21) = Yi(2n, 21) = 571(21, zp,) the distribution of roles within teams does
not matter. For all a € [0,1], dy(z1,2n) = a X 2d¥(z;,z,) and dy(zp,z;) = (1 —a) X
2d¥(zy, z1,) is solution.
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written as the dual of the associated Monge-Kantorovich problem, and show
that the values of these two dual programs are also equal. Step 3: Since Vil-
lani (2009) asserts that there is duality in the associated Monge-Kantorovich
problem, we conclude that there is duality in our one-sided assignment model.

Step 1: The social planner program.

As shown in the proof of Proposition 9, we have SPP* = SPPy .

Step 2: The dual program.

The dual program associated to program (P2’) introduced in the proof of
proposition 9 reads as:

PP = min | (@() +,(:)) 5u(:) (D)

Wy, Wh

s.t.
wi(z) > p(z) Vi=h,l and for all z € Z(i")

wy(z) + wp(zp) > ﬁ(zhzh) for all 2,2, € Z* (ii").

It is easy to see that (D1) is equivalent to (D2’) but with the additional
symmetry constraint w; = w,. We therefore have by definition DP* >
DPj . Let (w;,wy) be a solution of (D2’) which exists from Theorem 5.10

in Villani (2009). Obviously, (w;, wy,) defined as w; := ZE0 = q, is also a
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solution of (D2’). Since (w;,wy,) satisfies the symmetry constraint it is also
a solution of (D1). We therefore have: DP* = DPy/ .

Step 3: Duality.

Since Theorem 5.10 part i) in Villani (2009) asserts that SPPj, =
DPy, ) as long as }71 is upper-semicontinuous, we conclude that SPP* =

DP*: there is duality in the one-sided assignment model. m

Proof of proposition 11: A feasible tuple ((wy(2),w;(2)), (L, H,~)) that solves

both the primal and dual program maximizes riders payoffs.

Proof. Suppose that w(z) := max{w,(z),w;(z)} solves the dual program

(D1) and (L, H,~y) solves the primal program. We then have:

[ maxtun wdn) = [ waut)+ [ )+ [ pedutz)

Z\LUH

= /LHYl(zl,zh)dy(zl,zh)-i-/ p(2)dp(z),

Z\LUH

where the first equality follows since by definition w;(z) = wy(z) = w(z) for
z € LNH, w(z) =w(z) for z € L\LNH and wy(z) = w(z) for z € H\LNH,

and the second from duality SPP* = DP* proved in Proposition 10.
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Hence:

wh(zh) + wl(zl) = Yl(zl,zh) for v — a.e. (Zl, Zh) e LxH
and

wy(z) = wu(z) =p(z) for p—ae. z € Z\LUH.

Take a leader z; € L that is matched with a helper z; € H in equilibrium
(i.e. sothat dy(z/, z;) > 0). The riders of this team get respectively wy,(z}) =
Yi(z, z5)—wi(z) and wy(z) = Yi(z], z5) —wn(z}). Since (wp(z), wi(2)) solves
the dual program, the feasibility constraints are satisfied so that w;(z) >
Yi(z, zn) — wp(zp) for all z, € Z and wy(z)) > Yi(z, 25) — wi(z) for all
z € Z. It follows that helper z; maximizes the payoffs of leader 2/ and

leader z; maximizes the payoffs of helper z;. m

Proof of corollary 12: The pair of payoffs functions (w;, wy,) that maximizes

riders’ payoffs is Pareto Optimal.

Proof. A feasible tuple ((wp(z),w;(2)), (L, H,~)) that solves the primal and
dual program maximizes riders’ payoffs from Proposition 11. Since (L, H, )
solves the primal program, the pair of equilibrium payoffs (w;, w;,) maximiz-

ing riders payoffs also maximizes social welfare. m
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Table 1: Identification of help intensity: regression of within team inequality
at Tour de France on within team inequality at the Prologue.

Variable | Within team inequality

Within team inequality Prologue 0.0258**
(0.011)

Constant 0.3632***

(0.023)

Observations 648

R-squared 0.008

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

Table 2: Help intensity and incentives to organize hierarchically.

Variable | Help Intensity Help intensity
Price money winner 0.2265%**
(0.034)
Share winner 0.0072%*
(0.003)
Constant -0.1291°%** -0.1135%**
(0.020) (0.040)
Observations 34 34
R-squared 0.574 0.149

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Touw de France

72

2000. Notes: (1) velocity is centered using year specific mean, (2) the density
for each decade is generated using kernel methods and pooling data of the

Figure 5: Evolution of the density of velocity in the Tour de France: 1950-
10 corresponding years (8 years for the 2000s).
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