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Abstract

Considering that a natural way of sharing risks in insurance companies is to
require risk by risk Pareto optimality, we offer in case of strong risk aversion, a
simple computable method for deriving all Pareto optima. More importantly
all Individually Rational Pareto optima can be computed according to our
method.

Keywords: Multivariate risk sharing, Comonotonicity, Individually
rational Pareto optima

1. Introduction

In a seminal paper, Landsberger and Meilijson (1994) extended a central
result of risk sharing established by Borch (1962) in the particular case of risk
averse expected utility (EU) decision makers (DM). Namely Landsberger and
Meilijson (1994) proved that for strong risk averse decision makers, efficient
risk-sharing allocations still coincide with comonotone allocations.
Recently Carlier et al. (2012) generalized the comonotone dominance princi-
ple as well as the equivalence between efficiency and comonotonicity to the
multidimensional case.
However, since Carlier et al. (2012) assumed that the agents have prefer-
ences agreeing with the multidimensional concave order, it turns out that
their generalization of comonotonicity is far from being intuitive. Hence,
their characterization of Pareto optima may appear as being somewhat awk-
ward.

∗alain.chateauneuf@univ-paris1.fr January 17, 2014
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The goal of this paper is to use a simple, natural and meaningful definition
of multidimensional risk aversion, namely component by component strong
risk aversion.
This allows to characterize Pareto optimal allocations as the component by
component comonotone allocations.
The main novelty provided by this work is to offer a complete characterization
of Pareto optima, by extensively taking advantage of the polytope structure
of these Pareto optima. Furthermore it is shown that this strategy also allows
to easily describe the entire convex set of individually rational Pareto optima,
under the mild assumption that the underlying probability information(we
just consider a finite set of states of nature) consists of rational probabilities.
This is not a too restrictive assumption since any probabilistic information
can indeed be approximated as far as needed by such rational probabilities.
The paper is organized as follows. Section 2 presents the framework and
recalls some definitions. Section 3 deals with the characterization of Pareto
optimal risk sharing, while section 4 offers a description of all individually
rational Pareto optima. Finally, section 5 concludes the paper.

2. Framework and Definitions

Consider, for the purpose of illustration, n insurance companies, i =
1, . . . , n, each holds at date zero, p portfolios of insurance of type k = 1, . . . , p
leading at date one to future stochastic wealth Xk

i :
(
S, 2S, P

)
→ R+ , where

S = (s1, . . . , sj, . . . , sm) is the finite space of the sets of nature, and P the
probability on 2S is given and satisfies P (sj) = pj > 0 ∀j.

Let wi = (w1
i , . . . , w

k
i , . . . , w

p
i ) be the initial endowment of insurance i

with respect to each portfolio of type k, i.e. each future wealth in each
state with respect to premia and reimbursements related to type k. Denote

wk =
n∑

i=1

wk
i .

By definition, X is a feasible allocation if X = (X1, . . . , Xi, . . . , Xn) with

Xi ∈
(
Rm

+

)p ∀i = 1, . . . , n and
n∑

i=1

Xk
i = wk ∀k ∈ J1, pK.

Let us now recall that if X and Y are bounded real random variables,
X dominates Y by the second order stochastic dominance i.e. X is consid-
ered as less risky than Y denoted by X�SSDY if

∫ p

0
F−1
X (t)dt ≥

∫ p

0
F−1
Y (t)dt
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∀p ∈ J0, 1K where F−1 is the usual quantile function.
Moreover X�SSDY i.e. X strictly dominates Y for the second order stochas-
tic dominance if furthermore

∫ p0
0
F−1
X (t)dt >

∫ p0
0
F−1
Y (t)dt for some p0 ∈ (0, 1].

We assume that each agent i has preferences �i associated with the com-
ponent by component second order stochastic dominance that is for Xi =
(X1

i , . . . , X
k
i , . . . , X

p
i ) ∈

(
Rm

+

)p
and Yi = (Y 1

i , . . . , Y
k
i , . . . , Y

p
i ) ∈

(
Rm

+

)p
then

if Xk
i �SSDY

k
i ∀k ∈ J1, pK one has Xi weakly preferred to Yi i.e. Xi�iYi and if

furthermore there exist k0 ∈ J1, pK such that Xk0
i �SSDY

k0
i then Xi is strictly

preferred to Yi i.e. Xi�iYi.

From the above assumptions it turns out that:

Definition 1

X = (X1, . . . , Xi, . . . , Xn) ∈ (Rm)p×n is Pareto optimal if ∀k ∈ J1, pK
(Xk

1 , . . . , X
k
i , . . . , X

k
n) is Pareto optimal in the usual sense for the univariate

case with respect to the second order stochastic dominance i.e. for k given:

Xk
i ∈ Rm

+ ∀i,
n∑

i=1

Xk
i = wk and there does not exist Y = (Y k

1 , . . . , Y
k
i , . . . , Y

k
n ),

Y k
i ∈ Rm

+ ∀i,
n∑

i=1

Y k
i = wk, such that Y k

i �SSDX
k
i ∀i and Y k

i0
�SSDX

k
i0

for some

i0.

Definition 2

X = (X1, . . . , Xi, . . . , Xn) ∈ (Rm)p×n is an individually rational Pareto
optimum ifX is Pareto optimal and individually rational i.e. ∀i, k Xk

i �SSDw
k
i .

3. Deriving all Pareto optima

From Definition 1 it turns out that the p-dimensional case reduces to p
one dimensional situations. So we just have to deal with the following situ-
ation:
X = (X1, . . . , Xi, . . . , Xn) Xi :

(
S, 2S, P

)
→ R+, w ∈ Rm

+ given. In subsec-
tion 3.1 for the sake of completeness we just propose what we hope to be a
very simple, direct and complete proof of the well-known characterization of
Pareto optimal allocations in terms of comonotonicity.
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3.1. Pareto optima in the one-dimensional case

Definition 3

An allocation X = (X1, . . . , Xi, . . . , Xn) is comonotone if,

∀
(
i, i

′) ∈ J1, nK2 (Xi (s)−Xi (t)) (Xi′ (s)−Xi′ (t)) ≥ 0 ∀ (s, t) ∈ S2.

We intend to retrieve, in a simple way, the well-known following theorem,
which is implicit in Landsberger and Meilijson (Landsberger and Meilijson
1994).

Theorem 1

The set of Pareto optimal allocations coincide with the set of comonotone
allocations.
The proof will result from the following two lemmas.

Lemma 1

Any Pareto optimal allocation is comonotone.

Proof: We just sketch the proof given in Chateauneuf et al. (2000). It is
enough to show that any non-comonotone allocationX = (X1, . . . , Xi, . . . , Xn)
can be improved to a new allocation X

′
=
(
X

′
1, . . . , X

′
i , . . . , X

′
n

)
which is mu-

tually beneficial for all agents and strictly beneficial for at least one.
Let us assume, without loss of generality, that comonotonicity is not satisfied
for X1 , X2 and for s1 , s2. Let X1 (s1) = x1, X1 (s2) = x2, X2 (s1) = y1,
X2 (s2) = y2 and assume without loss of generality that x1 + y1 ≤ x2 + y2,
x1 > x2 and y1 < y2. Let us modify (x1, x2) to

(
x

′
1, x

′
2

)
and (y1, y2) to

(
y

′
1, y

′
2

)
where x

′
1 = x

′
2 =

p1x1 + p2x2
p1 + p2

, y
′
1 = x1 + y1 − x

′
1 and y

′
2 = x2 + y2 − x

′
2. so

X = (X1, . . . , Xi, . . . , Xn) has been modified to X
′

= (X
′
1, X

′
2, X

′
3, . . . , Xn

′
)

where Xi
′
= Xi ∀i = 3, . . . , n.

It is then straightforward to see that we obtain a new allocation X
′

and
that Xi

′
is strictly less risky than Xi for i = 1, 2 since E(u(Xi

′
)) > E (u (Xi))

for any strictly concave utility function u, which completes the proof.

Lemma 2

Any comonotone allocation is Pareto optimal.
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Proof: Let X = (X1, . . . , Xi, . . . , Xn) be a comonotone allocation. We
just intend to show that it is impossible that a feasible allocation Y =
(Y1, . . . , Yi, . . . , Yn) strictly dominates X. Without loss of generality, we as-
sume that Y1�SSDX1 i.e. there exists p0 ∈ (0, 1] such that:∫ p0

0

F−1
Y1

(t)dt >

∫ p0

0

F−1
X1

(t)dt

and,∫ p

0

F−1
Y1

(t)dt ≥
∫ p

0

F−1
X1

(t)dt and ∀p ∈ [0, 1].

Moreover

∫ p

0

F−1
Yi

(t)dt ≥
∫ p

0

F−1
Xi

(t)dt ∀i ∀p ∈ [0, 1].

Hence we get,
n∑

i=1

∫ p0

0

F−1
Yi

(t)dt >
n∑

i=1

∫ p0

0

F−1
Xi

(t)dt (1)

Let us now show that,

n∑
i=1

∫ p0

0

F−1
Yi

(t)dt ≤
∫ p0

0

F−1∑n
i=1 Yi

(t)dt (2)

Recall that TVAR is sub-additive see Denuit and Dhaene (2012), i.e. for any

random variable Z, TVAR(Z,p) =
1

1− p

∫ 1

p

F−1
Z (t))dt, where p ∈ [0, 1) is

such that for any random variables T and Z one gets:

TVAR(Z+T,p) ≤ TVAR(Z,p)+TVAR(T,p)

From E(Z) =

∫ 1

0

F−1
Z (t))dt, E(T ) =

∫ 1

0

F−1
T (t))dt and indeed E(Z + T ) =

E(Z) + E(T ) it is then straightforward to obtain:∫ p0

0

F−1
Z+T (t)dt ≥

∫ p0

0

F−1
Z (t)dt+

∫ p0

0

F−1
T (t)dt
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And therefore by induction one gets (2). Combining (1) and (2) we obtain:

n∑
i=1

∫ p0

0

F−1
Xi

(t)dt <

∫ p0

0

F−1∑n
i=1 Yi

(t)dt (3)

But
n∑

i=1

Xi = w =
n∑

i=1

Yi hence F−1
w = F−1∑n

i=1 Xi
= F−1∑n

i=1 Yi
,

moreover since X is comonotone F−1∑n
i=1 Xi

=
n∑

i=1

F−1
Xi

a.e. (almost every-

where) thus (3) implies:∫ p0

0

F−1
w (t)dt <

∫ p0

0

F−1
w (t)dt a contradiction, which completes the proof of

lemma 2 and henceforth of Theorem 1.

3.2. Deriving all Pareto optima

We intend now to show that the set of Pareto optima is a polytope. There-
fore by implementing the vertex identification algorithm as can be found in
MATLAB (2010), one can easily obtain all Pareto optima. Let us start by a
preliminary lemma.

Lemma 3

Let w(sj) = wj. Then after possibly relabeling, if needed, the indices in
such a way that w1 ≤ . . . ≤ wj ≤ . . . ≤ wm, one gets: If (Xi)i=1,...,n is an
allocation, then the two following properties are equivalent;

(i) (Xi)i=1,...,n is comonotone.

(ii) Xi(1) ≤ . . . ≤ Xi(j) ≤ . . . ≤ Xi(m) ∀i = 1, . . . , n.

Proof:
(i)=⇒(ii): Let wj ≤ wj+1 and assume there exists i0 such that Xi0(j) >
Xi0(j+1). Since (Xi)i=1,...,n is comonotone, we have Xi(j) ≥ Xi(j+1)∀i 6= i0.
Summing up both sides of the inequality over i = 1, . . . , n gives

∑n
i=1Xi(j) >∑n

i=1Xi(j+1). Since (Xi)i=1,...,n is a feasible allocation, the following relation
wj > wj+1 is obtained, which is a contradiction.

6



(ii)=⇒(i): Take j 6= j
′
. From (ii) we have:

Xi(1) ≤ . . . ≤ Xi(j) ≤ . . . ≤ Xi(m) ∀i = 1, . . . , n, therefore it is immediate
that ∀i 6= i

′
(Xi(j)−Xi(j

′
))(Xi′ (j)−Xi′ (j

′
)) ≥ 0, which means that the Xi

’s are pairwise comonotone.

Theorem 2

The set of Pareto optima is a polytope, hence it is the convex hull of its
finitely many extreme points.

Proof: Since from Theorem 1, Pareto optima are comonotone allocations,
it is straightforward from lemma 3 to see that the set P of Pareto optima
is a nonempty compact convex subset K of Rn , defined as the intersection
of some finite collection of closed half-spaces (that is the set of solutions
of finitely many linear inequalities). Hence from proposition 3.2.1 in Floren-
zano et al. (2001) we conclude that P is a polytope, and from the well-known
Krein-Milman theorem (see for instance, proposition 3.1.4 in Florenzano et al.
(2001)) that P is the convex hull of its extreme points. Since P is a polytope,
the number of these extreme points is finite.

3.3. Two illustrating examples

Here we present two examples to illustrate the procedure of the calcu-
lation of the extreme points; also we study the properties of the obtained
vertices through these examples. In the first example, we chose the following
values for the parameters introduced in the problem framework. We take
m = n = 2 and the initial vector of endowment w = (2, 4), which leads to
the following constraints:

P = {(x1, x2), (y1, y2)} such that:


−x1 ≤ 0, − x2 ≤ 0
−y1 ≤ 0, − y2 ≤ 0
x1 − x2 ≤ 0, y1 − y2 ≤ 0
−x1 − y1 ≤ −2, − x2 − y2 ≤ −4
x1 + y1 ≤ 2, x2 + y2 ≤ 4

As it was discussed before, P is a polytope. Furthermore, P is the con-
vex hull of the finite set of extreme points. For the sake of illustration, we
obtain the extreme points of P . First we construct the related system S of

7



linear equations with the four unknown quantities x1, x2, y1 and y2:

À x1 + y1 = 2

Á x2 + y2 = 4

Â x1 = 0

Ã x2 = 0

Ä y1 = 0

Å y2 = 0

Æ x1 − x2 = 0

Ç y1 − y2 = 0

Clearly any extreme point satisfies the endowment constraints (1) and (2).
So building for instance upon Proposition 3.3.1 in Florenzano et al. (2001),
we know that any extreme point is a solution of a subsystem of S including
equalities (1) and (2), which is of rank 4, and which satisfies, the corre-
sponding remaining inequalities of P . First we pick equations (1), (2), (3)
and (4) , which leads to (x1 = 0, y1 = 2) and (x2 = 0, y2 = 4). Now we check
the obtained result with the remaining inequality constraints, which proves
that ((x1, x2), (y1, y2)) is situated inside the polytope, therefore it is a feasi-
ble solution and can be regarded as one of the vertices of the polytope. We
add (x1 = 0, y1 = 2) and (x2 = 0, y2 = 4) to the set of vertices and continue
the algorithm for the remaining set of equations to identify all the extreme
points. In this way four extreme points are identified as below:

{((x1, x2), (y1, y2))} = {((0, 0), (2, 4)) , ((2, 4), (0, 0)) , ((0, 2), (2, 2)) ((2, 2), (0, 2))}

As already mentioned in theorem 2, the set of Pareto optima can be de-
fined as the convex hull of the identified extreme points. Hence, considering
the extreme points obtained for this example, the set of Pareto optimal can
be presented as below:

{((x1, x2), (y1, y2))} = lbrace (2α2 + 2α4 , 4α2 + 2α3 + 2α4) ,

(2α1 + 2α3 , 4α1 + 2α3 + 2α4)} (4)
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In the second example we consider the parameters, m = 3, n = 2 and
w = (3, 5, 3). The comonotonicity assumption requires reordering the initial
endowment in an increasing order, which gives w = (3, 3, 5). Now we can
construct the system of equations and inequalities as described in the problem
framework. The obtained feasible extreme points are as following:

{((x1, x2, x3), (y1, y2, y3))} = {((0, 0, 0), (3, 3, 5)) , ((3, 3, 5), (0, 0, 0)) ,

((0, 0, 2), (3, 3, 3)) ((3, 3, 3), (0, 0, 2))} (5)

One important property of the obtained extreme points in this example and
the previous one is the symmetry of results with respect to the replacing
of xi by yi. This property is due to the structure of equalities, imposed by
endowment constraints. Hence if (xi, yi) is an extreme point, (yi, xi) is also
an extreme point of the polytope1.

4. Deriving all individually rational Pareto optima

As for Pareto optima, it turns out from Definition 2 that the p-dimensional
case reduces to p one dimensional cases. Let wi :

(
S, 2S, P

)
→ R+, i=1, . . . ,n

be the initial endowments of the agents. We are looking for a Pareto opti-
mum X = (X1, . . . , Xi, . . . , Xn) such that Xi�SSDwi, i = 1, . . . , n.

Some preliminary lemmata:

Lemma 4

Any individually rational Pareto optimum (IRPO)Xi is such that E(Xi) =
E(wi).

Proof: One has
∑n

i=1wi =
∑n

i=1Xi hence
∑m

i=1E(wi) =
∑m

i=1E(Xi) but

Xi�SSDwi so

∫ 1

0

F−1
Xi

(t)dt ≥
∫ 1

0

F−1
wi

(t)dt i.e. E(Xi) ≥ E(wi) which gives

the result.

1Indeed implementing the vertex identification algorithm in MATLAB(2010) would
give the set of Pareto optima in any case.
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Lemma 5

The set PIR of individually rational Pareto optima is nonempty.

Proof: Landsberger and Meilijson (1994) nicely proved in their Proposi-
tion 1 (page 100) that every allocation is dominated by some comonotone
allocation, therefore from Theorem 1 one can conclude that there exist at
least one individually rational Pareto optimum.

Remark 1

Note that in the present paper, we intend to systematically derive all
IRPO ’s at least for rational probabilities (which apparently in “real life” is
not a severe limitation). Our result contrasts from the algorithms which
can be found in the literature. Actually these algorithms propose a method
to obtain only one IRPO (see e.g. Landsberger and Meilijson (1994) or
Ludkovski and Rüschendorf (2008)), but not all IRPO ’s.

Remark 2

Note that even for a finite state space S , it is not easy to express the
individually rational conditions Xi�SSDwi, i = 1, . . . , n. Actually Xi�SSDwi

is equivalent to ∫ p

0

F−1
Xi

(t)dt ≥
∫ p

0

F−1
wi

(t)dt ∀p ∈ (0, 1) (6)

with equality if p=1, as noticed in Lemma 4, but even if (6) has to be checked
only for a finite number p` ∈ (0, 1), in practice finding which p` must be cho-
sen is a delicate task. In contrast, if each pj is a rational probability, let us

say of the type pj =
kj
q

where kj, q ∈ N∗
+, it is immediate that Xi�SSDwi iff∫ k

q

0

F−1
Xi

(t)dt ≥
∫ k

q

0

F−1
wi

(t)dt ∀k ∈ J1, qK.

We then state Theorem 3, which is the main result of this paper.

Theorem 3

The set PIR of individually rational Pareto optima is a polytope, hence
the convex hull of its finitely many extreme points.

Proof: The proof is similar as the one of theorem 2 except that we have
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now to take into account the new“closed half-spaces” constraints E(Xi) =

E(wi)∀i and

∫ p`

0

F−1
Xi

(t)dt ≥
∫ p`

0

F−1
wi

(t)dt ∀i∀p`. Note that IRPO ’s depend

on the probability P while PO ’s are independent of probability P.

4.1. Two illustrating examples

Example 1

Table 1:

State s1 s2

p 1
2

1
2

w1 2 0

w2 0 4

w 2 4

One can imagine that 1 and 2 are agricultural producers and that w1, w2

represents the possible production of tomatoes during one year depending on
the climate conditions s1 and s2. Note by the way that one could imagine
that these agricultural producers produce also potatoes, so our definition of
Pareto optima as Pareto optima separately with respect to tomatoes pro-
ductions and potatoes productions would apparently make sense in such a
situation.

Here we are looking for Pareto optima X = (x1, x2) and Y = (y1, y2).
Clearly the Pareto optima (X, Y ) are characterized by:

Comonotonicity condition: x1 ≤ x2 and y1 ≤ y2

Dominance: X�SSDw1 so x1 ≥ 0 and E(X) = E(w1) i.e. x1 + x2 = 2
Y�SSD w2 so y1 ≥ 0 and E(Y ) = E(w2) i.e. y1 + y2 = 4

Feasibility: x1 ≥ 0 and x2 ≥ 0, y1 ≥ 0 and y2 ≥ 0
x1 + y1 = 2, x2 + y2 = 4

Hence direct computations give that the extreme IRPO ’s are ((0, 2) , (2, 2))
and ((1, 1) , (1, 3)) so:

11



PIR = {(α2, 2α1 + α2) , (2α1 + α2, 2α1 + 3α2) , α1 ≥ 0, α2 ≥ 0, α1 + α2 = 1}

Example 2

Table 2:

State s1 s2

p 1
4

3
4

w1 2 0

w2 0 4

w 2 4

Table 3: Converted to the uniform probability

State s1 s21 s22 s23

p 1
4

1
4

1
4

1
4

ŵ1 2 0 0 0

ŵ2 0 4 4 4

ŵ 2 4 4 4

Note that we can write the initial situation as in table 3 by taking into
account that the true states that will occur are s1 and s2, and not s1, s21,s22
and s23. So Pareto optima will be X = (x1, x2) and Y = (y1, y2) or fictitious
X̂ = (x1, x2, x2, x2) and Ŷ = (y1, y2, y2, y2), so the set PIR will now satisfy
the polytope property:

Comonotonicity condition: x1 ≤ x2 and y1 ≤ y2

Dominance: X�SSDw1 , x1 ≥ 0 and x1 + x2 ≥ 0, x1 + 2x2 ≥ 0,
E(X) = E(w1) i.e. x1 + 3x2 = 2
Y�SSDw2 , y1 ≥ 0 , y1 + y2 ≥ 4,y1 + 2y2 ≥ 8, E(Y ) = E(w2) i.e.
y1 + 3y2 = 12

Feasibility: x1 ≥ 0 and x2 ≥ 0 y1 ≥ 0 and y2 ≥ 0
x1 + y1 = 2, x2 + y2 = 4

12



Hence direct computation gives that the extreme IRPO ’s are
((

0, 2
3

)
,
(
2, 10

3

))
and

((
1
2
, 1
2

)
,
(
3
2
, 7
2

))
so:

PIR =
{(

1
2
α2,

2
3
α1 + 1

2
α2

)
,
(
2α1 + 3

2
α2,

10
3
α1 + 7

2
α2

)
, α1 ≥ 0, α2 ≥ 0, α1 + α2 = 1

}

5. Conclusion

In this paper, in case of multiple risks, we did adopt the idea that a
natural way for insurance companies to optimally share risks is risk by risk
Pareto-optimality. Our framework is based upon the well-known results in
the one dimensional case characterizing Pareto-optimality as comonotonicity
in case of strong risk aversion. Two main results are obtained in this work.
Due to the polytope structure of Pareto-optima and also of Individually
Rational Pareto-optima, we offer a simple computable method. First for
deriving all Pareto-optima and second -in the not severely restrictive case of
rational probabilities- for deriving all Individually Rational Pareto-optima.
The method merely consists in systematically obtaining the finitely many
extreme points of the respective polytopes.
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