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Abstract 

Transmission of price shocks from one market to another one has long been investigated in the 
economic literature. However, studies have namely dealt with the relationship between financial and 
energy markets. With the recent changes in market conditions, investors, policy-makers and interest 
groups are giving special attention to food market. This paper aims at analyzing shocks transmission 
between international food, energy and financial markets and to provide some insights into the 
volatility behavior during the past years and discuss its implications for portfolio management. To do 
this, we present a new Time Varying Parameter VAR model (TVP-VAR) with stochastic volatility 
approach which provides extreme flexibility with a parsimonious specification. We resort also to a 
generalized vector autoregressive framework in which forecast-error variance decompositions are 
invariant to the variable ordering for the assessment of total and directional volatility spillovers. Our 
main findings suggest that there is volatility spillover from crude oil and international stock markets 
to food markets. Shocks to crude oil or MSCI markets have immediate and short-term impacts on 
food markets which are emphasized during the financial crisis period. Moreover, we show that 
augmenting a diversified portfolio of food commodities with crude oil or stocks significantly increases 
its risk-adjusted performance. 

Keywords: Price volatility, TVP-VAR model, stochastic volatility, total volatility spillovers, directional 
volatility spillovers, food market, energy market, financial market, portfolios diversification, hedge 
effectiveness.  
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1. Introduction  

During the 2000s, world indexes related to food prices and energy prices have shown 

simultaneous upward trends and volatilities. Figure 1 below, which represents the evolution 

over time of these two indexes provided from International Monetary Fund (IMF) database, 

illustrates this trend. This has led to think about shock and volatility transmission 

mechanisms between these two markets. 

 

Please insert Figure 1 about here 

 

This topic has become a central issue for the global economy and has been widely discussed 

mainly since the financial crisis due to the significant rise in energy and food prices. 

Nevertheless, there is still less agreement about the causal factors of this shock and volatility 

transmission. It has been raised in the literature that volatility of agricultural commodities is 

no longer simply guided by rules of the fundamental factors related to supply and demand 

(Prakash and Gilbert, 2011). Different sources can explain this volatility which may be 

summed up in natural shocks related to climatic changes, stock levels, agricultural product 

demand and supply, growing links with energy and financial markets, and macroeconomic 

factors (exchange rates and interest rates). 

It is evident that understanding volatility transmission mechanisms is essential for both 

international investors and policy makers (Mensi et al., 2013). In fact, as commodity markets 

are increasingly viewed as alternative investment areas, existence and direction of spillovers 

must be carefully evaluated by investors. Investors need this type of information for the 

purpose of their portfolio risk management in order to develop their investment strategies 

for each market and to decide whether they can benefit from risk diversification. It is argued 

that food commodities are having as much interest in portfolio allocation as crude oil prices 

have (Gilbert, 2010).  

Policy makers also require this information about volatility to settle on the appropriate 

policy namely by establishing the accurate pricing models and also to anticipate future 

actions and decisions (Deaton, 1999). Numerous studies have focused on commodity price 

stabilization policies that have to be carried out by governments. Most of these have dealt 



3 
 

with agricultural prices (Wright, 2001). In their works, Gardner (1979) and Gouel (2013) have 

generalized the scope to deal with food prices. According to Gouel (2013), it is essential to 

identify the precise economic motives for intervention and to design the policies accordingly 

given the pervasiveness of these policies and the potential cost of food price spikes for poor 

consumers. Many international organizations have investigated policy responses in order to 

manage food price volatility (Gilbert, 2012). Recommendations issued form these 

organizations1 have been formulated in the 2011 G20 Summit on food security. 

Special attention has been actually devoted to the source of food volatility related to the link 

between energy and financial markets. In a report from the Global Development and 

Environment Institute and the Institute for Agriculture and Trade Policy, Wise and Murphy 

(2012) have illustrated the paradigm shift between agriculture, energy and financial markets 

and mentioned that this paradigm is caused by the deepening integration of the three 

markets. 

Recent empirical studies have analyzed the determinants of volatility in food commodity 

prices by resorting to different econometric methods and focusing on different data during 

various periods of time. These studies reveal a divergence between the findings obtained 

which makes this issue a topic of current discussions. 

In fact, most of these studies highlight the significant volatility linkages between oil prices 

and most food commodities prices which is deepened through biofuel sector growth (among 

others: Baffes, 2007; Akram, 2009; Balcombe, 2011; Ciaian and Kancs, 2011; Busse et al., 

2011). These studies agree on the fact that oil price volatility translates into food price 

volatility through two key elements. The first one corresponds to transportation costs and 

fertilizer prices. The second element is related to biofuels and the expanding use of 

agricultural commodities as feedstocks for biofuel production. This agreement, taken alone, 

leads to think that transmission of oil price volatilities to crop prices may be more rapid. 

The work of Baffes (2007) has been based both on food price indices and individual food 

prices annual data for the 1960-2005 period analyzed through an Ordinary Least Squares 

regression. Akram (2009) findings, obtained from structural VAR models, have been based 

on a larger sample covering the period 1990-2007 with data having a higher frequency 

                                                           
1 FAO, OECD, IFAD, IMF, UNCTAD, WFP, the World Bank, the WTO, IFPRI, and the UN HLT. 
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(quarterly data) corresponding to real commodity prices. Balcombe (2011) analyzed monthly 

and annual prices during the period 1957-2009 covering various food commodities (wheat, 

maize, rice, soybean, rapeseed, palm, poultry, beef, pigmeat, butter, cheese, cocoa, coffee, 

tea, sugar and cotton) through random parameters models with time varying volatility and a 

panel regression approach. A much larger sample has been used by Ciaian and Kancs (2011) 

covering the period 1993-2010. This sample is composed of price series having a much 

higher frequency (weekly data) and corresponding to a wider variety of foods (corn, wheat, 

rice, sugar, soybeans, cotton, banana, sorghum and tea). The work of Ciaian and Kancs 

(2011) has been characterized by the consideration of the structural breaks while studying 

price transmission between energy, bioenergy and food prices. For this purpose, Ciaian and 

Kancs (2011) divided the sample into three periods (1993–1998, 1999–2004 and 2005–

2010). The first one is characterized by the reduction in the OPEC spare capacity. The second 

period is related to the increase in bioenergy policy support in developed economies. The 

third one corresponds to the significant expansion of biofuel production. An analysis 

focusing on daily rapeseed future prices from 1999 to 2009 has been done by Busse et al. 

(2011) using Dynamic Conditional Correlation method. 

Some other works indicate that volatility spillover form crude oil to food commodities prices 

is not always significant. For instance, we can cite the works of Du et al. (2011) and Nazlioglu 

et al. (2013). Du et al. (2011) findings indicate volatility spillover among crude oil, corn and 

wheat markets after the fall of 2006. Data considered by Du et al. (2011) correspond to 

futures prices weekly observed from 1998 to 2009. These data have been analyzed by 

applying stochastic volatility models and resorting to Bayesian econometric analysis for the 

estimation of the models’ parameters. The same result has been shared by Nazlioglu et al. 

(2013) by extending the scope of agricultural commodities considered (wheat, corn, 

soybeans, and sugar) and raising their frequency to daily prices observed over a longer 

sample from 01 January 1986 to 21 March 2011. Nazlioglu et al. (2013) apply a different 

method which corresponds to the causality in variance test and impulse response functions. 

In order to identify the impact of the food price crisis, Nazlioglu et al. (2013) divided the data 

into two sub-periods: the pre-crisis period (January 1986-31 December 2005) and the post-

crisis period (01 January 2006–21 March 2011). Their findings mention that, with the 
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exception of sugar, volatility spillover between oil and agricultural markets is absent in the 

pre-crisis period and is confirmed during the post-crisis period. 

Nevertheless, some other studies reveal no volatility spillover effect between these two 

markets (among others: Zhang et al., 2010; Kaltalioglu and Soytas, 2011). The results of 

Zhang et al. (2010) indicate no direct long-run price relations between fuel and agricultural 

commodity prices and limited if any direct short-run relationships, except for sugar which 

has an influence on increasing agricultural commodity prices through biofuel production 

affects. These results, obtained by means of cointegration estimation and a vector error 

corrections model, are based on monthly price data of fuels (ethanol, gasoline and oil) and 

agricultural commodities (corn, rice, soybeans, sugar and wheat) for the period 1989-2008. 

Kaltalioglu and Soytas (2011) have extended the sample to include, in addition to agricultural 

commodities, other food commodities. Their sample is composed of price indexes for the 

period from 1980 to 2008 observed monthly and covering fruits, vegetables, meat, poultry, 

fish, grocery food, and non-alcoholic beverages. For the purpose of volatility spillover 

investigation, they based their analysis on the Granger causality in variance approach 

developed by Cheung and Ng (1996). 

Therefore, the literature review highlights Zilberman et al. (2013) statement which consists 

on the fact that the relationship between fuels and food commodities prices depends, 

among others, on commodities considered for each one of these two markets, the 

specification of the models used for this finality and the frequency of considered data. 

Concerning volatility transmission between financial and food markets, most of the previous 

works have considered the S&P 500 index. We can list hereafter, as summary and not 

exhaustive review, some of the recent relevant work that has been done. Mensi et al. (2013) 

investigate the return links and volatility transmission between S&P 500 and commodity 

price indices for energy, food, gold and beverages over the period from 2000 to 2011 by 

resorting to a VAR-GARCH model. Their findings indicate a significant volatility transmission 

among commodity markets and the S&P 500. Creti et al. (2013) findings confirm this by 

means of the dynamic conditional correlation GARCH methodology applied to data observed 

during the period 2001-2011 covering, among other commodities, energy, agricultural, food, 

oleaginous, exotic and livestock commodities. Creti et al. (2013) also highlight the role 
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played by the 2007-2008 financial crisis in emphasizing the links between commodities and 

stock market and the financialization of commodity markets. 

The recent work of Chen et al. (2013) identifies two common factors which are responsible 

for changes in international commodity prices. This work is based on a factor analysis 

procedure (Panel Analysis of Nonstationarity in Idiosyncratic and Common Components) 

developed by Bai and Ng (2004) which is applied to a panel of 51 international commodity 

prices, including non-fuel commodity indices, food index, beverage index, and agricultural 

raw material index, from January 1980 to December 2009. The results provide strong 

evidence that the most important common factor that drives the persistent movement of 

international commodity prices corresponds to US nominal exchange rate. The second 

common factor shows stable fluctuations which may be consistent with stationarity and may 

be closely related to some economic conditions such as the excess demand for certain 

commodities. The works conducted by Roache (2010) and Gilbert (1989) emphasize that 

commodity prices can be influenced by exchange rates via international purchasing power 

and the effects on margins for producers with non-American dollar costs.  

In this paper, we focus on volatility transmission between crude oil prices, MSCI index prices 

and a large panel of food commodities prices differing in terms of their production topology 

(crops, livestock products, plantation and forestry products). We explore also whether MSCI 

index and crude oil prices have a role in driving food prices. To the extent of our knowledge, 

we focus here for the first time on real prices of livestock products and MSCI stock index 

market. We resort in our analysis to a Time Varying Parameter VAR model (TVP-VAR) with 

stochastic volatility which allows to take into account the economy structure evolution and 

the volatility of the shocks. Total and directional volatility spillovers are assessed based on a 

generalized vector autoregressive framework in which forecast-error variance 

decompositions are invariant to the variable ordering. 

The remaining of this paper evolves as follows. Next section introduces the methodology 

adopted in this paper. The following one presents the characteristics of our data and a 

preliminary analysis of these data. The penultimate section discusses empirical findings 

related to total and directional volatility spillovers, impulse responses and portfolio 

diversification. The last one concludes and points to some directions for future research. 
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2. Methodology 

Most of the methods used in the literature in order to analyze commodity prices volatility 

are based on GARCH models which allow for rich insights into the volatility structure of time 

series and provide information about the conditional correlation between the changes of 

different price series in their multivariate versions. However, GARCH models do not offer a 

clear unified methodology to uncover volatility dynamics operating between the involved 

variables and to recognize structural changes. Multivariate GARCH models share the main 

problem which consists on the difficulty, in many cases, to obtain convergence of the 

optimization algorithms used to estimate the parameters. 

Since there are similarities between GARCH and VAR models, we generalize VAR models to 

allow for stochastic time-varying volatilities and extend impulse response functions to the 

analysis of shocks in volatility. Compared to previous works discussed above, this article 

provides a new look at the transmission of shocks between food, financial and energy 

markets and provide original findings on the impact of independent shock on volatility. This 

choice has been based on the studies of Primiceri (2005) and Koop et al. (2009) which 

mention that both the transmission mechanism and the variance of the exogenous shocks 

have changed over time. Koop and Korobilis (2010) also highlight that the issue of the 

appropriate modeling of the error covariance matrix in multivariate time series models has 

led to the incorporation of multivariate stochastic volatility in many empirical papers. Hence, 

understanding the macroeconomic policy issues should be based on multivariate models 

where both the VAR coefficients and the error covariance matrix can potentially change over 

time. This reflects both time variation of the simultaneous relations among the variables of 

the model and heteroskedasticity of the innovations. 

More precisely, we build on the multivariate time-varying parameter vector autoregressive 

(TVP-VAR) model introduced recently by Primiceri (2005) and especially used in analyzing 

macroeconomic issues for the empirical research of price volatility behavior. The TVP-VAR 

model has an advantage over the constant parameter VAR models in the sense that it does 

not need to divide data into subsamples to confirm the change of the structure of the model 

(Jouchi Nakajima et al., 2009). Thus, we avoid the risk of losing information based on the 

entire sample and having results which depend on the arbitrary choice of the sub-samples. 

In fact, instead of splitting the sample into several sub-samples, the time variation in the 
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parameters enables the exact dating of the transition. The time-varying variances capture 

the change in the impact and nature of the shocks, enabling us to model the apparent 

decline in volatility.  

The standard VAR model with constant parameters allows drawing impulse responses only 

for a set of two variables under the assumption that parameters do not change over the 

horizon of the impulse responses. With the TVP-VAR model, an additional dimension 

corresponding to time can be added which permits to check responses at different points in 

time. As we will explain below, this major advantage of the TVP-VAR model family is very 

useful to investigate transmission of volatility shocks between different markets.  

In order to be able to capture possible changes in underlying structure of the considered 

markets in a flexible and robust manner, we build on Omori et al. (2007) and extend the 

TVP-VAR model of Primiceri (2005) by incorporating stochastic volatility. Thus, our model 

allows to reflect both time variation of the simultaneous relations among the variables 

which can be due to variations in the structural dynamic interrelations among 

macroeconomic variables and heteroskedasticity of the innovations which can be due to 

changes in the size of exogenous shocks or their impact on macroeconomic variables 

(D’Agostino et al., 2013). 

According to Primiceri (2005), Omori et al. (2007) and Jouchi (2011), the TVP-VAR model is 

constructed form the basic structural VAR model by allowing the parameters to change over 

time. We consider a basic structural VAR model defined as: 

𝐴𝑦𝑡 = 𝐹1𝑦𝑡−1 + ⋯+ 𝐹𝑠𝑦𝑡−𝑠 + 𝑢𝑡 , 𝑡 = 𝑠 + 1, … ,𝑛 (1) 

where : 

�
𝑦𝑡is 𝑎 𝑘 × 1 vector of observed variables
𝐴,𝐹1, … ,𝐹𝑠are 𝑘 × 𝑘 matrices of coefficients

𝑢𝑡is 𝑎 𝑘 × 1 structural shock with𝑢𝑡~ 𝑁(0,∑∑)
 

∑ = �

𝜎1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝜎𝑘

� 
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𝐴 = �

1 0 … 0
𝑎21 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
𝑎𝑘1 … 𝑎𝑘,𝑘−1 1

� 

The reduced form of this model can be written as follows: 

𝑦𝑡 = 𝐵1𝑦𝑡−1 + ⋯+ 𝐵𝑠𝑦𝑡−𝑠 + 𝐴−1∑𝜀𝑡, 𝜀𝑡~ 𝑁(0, 𝐼𝑘) (2) 

Where 𝐵𝑖 = 𝐴−1𝐹𝑖,      𝑖 = 1, … , 𝑠 

This form can be written in this way: 

𝑦𝑡 = 𝑋𝑡β + 𝐴−1∑𝜀𝑡 (3) 

With: 

�
β is a (𝑘2𝑠 × 1) vector obtained by stacking the elements in the rows of the 𝐵𝑖′𝑠

𝑋𝑡 = 𝐼𝑠⨂�𝑦′𝑡−1, … ,𝑦′𝑡−𝑠�
 

 

The expression of this model to the TVP-VAR model with stochastic volatility is given by: 

𝑦𝑡 = 𝑋𝑡𝛽𝑡 + 𝐴𝑡−1∑𝑡𝜀𝑡 ,  𝑡 = 𝑠 + 1, … ,𝑛 (4) 

For simplicity, a number of assumptions are done for the specification of the TVP-VAR 

model2. First, the matrix 𝐴𝑡  is assumed to be a lower-triangular matrix. Second, the 

parameters are supposed to follow a random walk process as follows: 

�
𝛽𝑡+1 = 𝛽𝑡 + 𝑢𝛽𝑡
𝑎𝑡+1 = 𝑎𝑡 + 𝑢𝑎𝑡
ℎ𝑡+1 = ℎ𝑡 + 𝑢ℎ𝑡

 

with:  

ℎ𝑡 = (ℎ1𝑡, … ,ℎ𝑘𝑡)′where ℎ𝑘𝑡 = 𝑙𝑜𝑔𝜎𝑗𝑡2 , 𝑗 = 1, … ,𝑘, 𝑡 = 𝑠 + 1, … , 𝑛 

𝛽𝑠+1~𝑁�𝜇𝛽0 ,∑𝛽0� 

                                                           
2 For a discussion of these assumptions, please see Christiano et al. (1999). 
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𝑎𝑠+1~𝑁�𝜇𝑎0 ,∑𝑎0� 

ℎ𝑠+1~𝑁�𝜇ℎ0 ,∑ℎ0� 

The variance covariance matrix of the model’s innovations is block diagonal. 

�

𝜀𝑡
𝑢𝛽𝑡
𝑢𝑎𝑡
𝑢ℎ𝑡

�~𝑁

⎝

⎜
⎛

0,�

1 0 0 0
0 ∑𝛽 0 0
0 0 ∑𝑎 0
0 0 0 ∑ℎ

�

⎠

⎟
⎞
 

Where ∑𝑎 and ∑ℎ are assumed to be diagonal matrixes. 

The assumption of random walk process allows for both temporary and permanent shifts in 

the coefficients. In this specification, possible non linearity such as a gradual change or a 

structural break can be estimated. 

TVP regression forms the state space model for which different estimation methods have 

been developed. In case of constant volatility, the standard Kalman filter for a Gaussian state 

space model is used. This method is heavy to implement in case of stochastic volatility since 

the model forms a non-linear state space model. As stated by Koop and Korobilis (2010), 

macroeconomists are facing the challenge of the choice of models which allow representing 

key data features and in the same time are not over-parameterized. It is argued that 

shrinkage enables to resolve the over-parameterization issue. Thereby, the recourse to 

Bayesian methods use has increased since priors constitute a way of introducing this 

shrinkage. Therefore, Bayesian inference will be introduced as an alternative to overcome 

the over-parameterization problem. 

In this paper, we resort to Markov Chain Monte Carlo (MCMC) method which is appropriate 

for several reasons. The first reason corresponds to the intractability of the likelihood 

function because the model includes the nonlinear state equations of stochastic volatility. 

The second is the opportunity offered by this method to make the inference for the state 

variables with the uncertainty of the unknown parameters. This method allows also 

estimating the function of the parameters such as an impulse response function with the 

uncertainty of the unknown parameters. As stated by Primiceri (2004) and Copy (2011), 

MCMC method delivers smoothed estimates of the parameters of interest based on the 
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entire available set of data. These estimates are more efficient than the filtered estimates in 

case of interest in the evolution of the unobservable states over time, which is the case for 

the issues we address in this paper. 

We thereby start by setting in advance certain prior probability densities similarly to 

Primiceri (2005). For a discussion about the different methods for the settlement of the 

priors, we refer to the work by Koop and Korobilis (2010). Based on these priors, we assess 

through MCMC algorithm the joint posterior distributions of the parameters of interest. 

The MCMC algorithm involves the following steps: 

1. Initialize 𝛽, 𝑎, ℎ and 𝑤 

2. Sample 𝛽 from 𝑝�𝛽|𝑎,ℎ,∑𝛽 , y� 

3. Sample ∑𝛽 from 𝑝�∑𝛽|𝛽� 

4. Sample 𝑎 from 𝑝(𝑎|𝛽, ℎ,∑𝑎, y) 

5. Sample ∑𝑎 from 𝑝(∑𝑎|a) 

6. Sample ℎ from 𝑝(ℎ|𝛽, 𝑎,∑ℎ, y) 

7. Sample ∑ℎ from 𝑝(∑ℎ|h) 

8. Go back to 2 

In order to generate the VAR parameters 𝛽, we use the equations below : 

�
𝑦𝑡 = 𝑋𝑡𝛽𝑡 + 𝐴𝑡−1∑𝑡𝜀𝑡, 𝑡 = 𝑠 + 1, … ,𝑛
𝛽𝑡+1 = 𝛽𝑡 + 𝑢𝛽𝑡 , 𝑡 = 𝑠, … ,𝑛 − 1 
where 𝛽𝑠 = 𝜇𝛽0and 𝜇𝛽𝑠~𝑁�0,∑𝛽0�

 

Simulation smoother introduced by de Jong and Shephard (1995), Durbin and Koopman 

(2002) is employed to speed the convergence of the Markov chain. 

To sample the covariance states 𝑎, we use the equations below to implement the simulation 

smoother : 

�𝑦�𝑡 = 𝑋�𝑡𝑎𝑡 + ∑𝑡𝜀𝑡, 𝑡 = 𝑠 + 1, … ,𝑛
𝑎𝑡+1 = 𝑎𝑡 + 𝑢𝑎𝑡 , 𝑡 = 𝑠, … ,𝑛 − 1  
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where 𝑎𝑠 = 𝜇𝑎0 ,  𝜇𝑎𝑠~𝑁�0,∑𝑎0� 

𝑦�𝑡 = 𝑦𝑡 − 𝑋𝑡𝛽𝑡 

 

and for 𝑡 = 𝑠 + 1, … ,𝑛 : 

𝑋�𝑡 =

⎝

⎜⎜
⎜
⎛

0 … 0
− 𝑦�1𝑡 0 0 … ⋮

0 − 𝑦�1𝑡 − 𝑦�2𝑡 0 …
0 0 0 − 𝑦�1𝑡 …
⋮ ⋱ 0 … 0
0 … 0 − 𝑦�1𝑡 … −𝑦�𝑘−1,𝑡⎠

⎟⎟
⎟
⎞
 

In order to draw stochastic volatility states ℎ , we make the inference for 

�ℎ𝑗𝑡�𝑡=𝑠+1
𝑛

separately for 𝑗 = 1, … ,𝑘. 

The i-th element of 𝐴𝑡𝑦�𝑡 can be written us : 

𝑦𝑖𝑡∗ = 𝑒𝑥𝑝 �
ℎ𝑖𝑡
2
� 𝜀𝑖𝑡, 𝑡 = 𝑠 + 1, … ,𝑛 

ℎ𝑖,𝑡+1 = ℎ𝑖𝑡 + 𝜂𝑖𝑡, 𝑡 = 𝑠, … ,𝑛 − 1 

�
𝜀𝑖𝑡
𝜂𝑖𝑡
�~𝑁 �0, �1 0

0 𝜐𝑖2
�� 

Where: 

𝜂𝑖𝑠~𝑁(0, 𝜐𝑖02 ) , 𝜐𝑖2  the i-th diagonal elements of ∑ℎ , 𝜐𝑖02  the i-th diagonal elements of 

∑ℎ0and  𝜂𝑖𝑡 the i-th element of 𝑢ℎ𝑡. 

To sample �ℎ𝑖,𝑠+1, … , ℎ𝑖,𝑛�, the multi-move sampler is used (Shephard and Pitt (1997) and 

Watanabe and Omori (2004). 

3. Data and preliminary analysis 

To study volatility shocks transmission between food, energy and financial markets, we 

consider, based on Deaton (1999) and Baffes (2007) recommendation, series of the 

individual commodities prices rather than price indices. Thus, we avoid the aggregation bias 
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of commodity prices and the weighting rule to combine them into indices (Hadri et al., 

2013). 

All these prices are expressed in American dollar and cover a long period of more than three 

decades (1980-2012) on a monthly basis. Food and energy prices are obtained from the 

International Monetary Fund (IMF). Food commodities covered by these data are different in 

terms of production topology: crops (Maize, Barley and Rapeseed oil), livestock products 

(lamb, beef and fish), and plantation and forestry products (Banana, Cocoa beans and 

Ground nuts). This large panel of different type of commodities will give us the opportunity 

to check whether they constitute a homogeneous asset class in the matter of their links with 

energy and stock markets. For the energy market, we consider in this paper crude oil. A brief 

description of the indicator price of these commodities is given in Appendix 1. As for the 

financial market, we consider the MSCI world stock market index for the same period 

obtained from Morgan Stanley Capital International (MSCI) company database.  

Figure 2 in Appendix 2 presents commodity prices and MSCI stock market index during our 

sample period. Similar to financial time series, commodities prices exhibit time varying 

volatility (volatility clustering) and fat tails as mentioned in the distribution of returns 

presented in Figure 1 in Appendix 2.  

A visual inspection of price evolutions suggests links between food, energy and stock 

markets. Especially, a strong increase in commodities prices emerged until 2008 financial 

crisis. To better understand market dynamics that affect food commodities, their 

interrelationships, and their link to crude oil and MSCI index, an analysis of volatility is 

required. 

We test, in a first time, the stationarity properties of our series using the augmented Dickey–

Fuller (ADF) test where the alternative hypothesis is stationary. ADF test reveals, as 

mentioned in table 1 below, non stationarity in prices where the null hypothesis of the 

existence of a unit root cannot be rejected for any series. However, the returns series show 

stationarity at 10% significance level, implying they are integrated of order 1. 

 

Please insert Table 1 about here 
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According to the AIC, FPE, HQ and the SC criterion, the optimal lag number is p = 1. Residuals 

are found to be white noise when the lag length is set to 1. Diagnostic plots of VAR(1) are 

not produced in this paper for brevity. Thus, we estimate the VAR, Structural Vector 

Autoregression (SVAR) and TVP-VAR models based on one lag length. 

4. Empirical results 

In this section, we consider each time a three-variable TVP-VAR model in order to assess 

volatility transmission between energy, financial and food markets and check if the 

magnitude of the impacts varies over time. Price returns are used to ensure stationary.  

The estimation of the parameters of the TVP-VAR model requires that priors be fixed in 

advance. Taking account of our data, we assume the following priors: 

�
∑𝛽~𝐼𝑊(80,0.01𝐼)
(∑𝑎)𝑖−2~𝐺(4,0.02)
(∑ℎ)𝑖−2~𝐺(4,0.02)

 

Where (∑𝑎)𝑖−2 and (∑ℎ)𝑖−2 the i-th diagonal elements in ∑𝑎 and ∑ℎ respectively, 𝐼𝑊 and 𝐺 

denote the inverse Wishart and the Gamma distributions respectively. 

Table 2 below presents the estimation results computed using MCMC algorithm (posterior 

means, standard deviations, 95% credible intervals, Geweke convergence diagnostics 

statistics and inefficiency). Based on Geweke statistics, the null hypothesis of the 

convergence to the posterior distribution in the estimated result is not rejected for the 

parameters of the TVP-VAR model at the 5% significance level. In addition, the inefficiency 

factors are quite low and the 95% confidence intervals include the estimated posterior mean 

for each of the parameters estimated. Therefore, the results show that posterior draws are 

efficiently produced by the MCMC algorithm. Figure 4 in Appendix 2 presents the estimation 

results of the TVP-VAR model with stochastic volatility. 

 

Please insert Table 2 about here 
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As stated before, TVP-VAR model will allow us to assess effects at different time periods. 

Hence, this will avoid us to estimate for each significant time period a model (Alom et al. 

2011). 

4.1. Stochastic volatility estimation 

Figure 2 below presents the dynamics of the estimated stochastic volatilities of commodity 

price returns series over time 𝜎𝑖𝑡2 = 𝑒𝑥𝑝(ℎ𝑖𝑡) based on the posterior mean and 95% credible 

intervals. This figure shows that volatility varies significantly in the time which reinforces the 

use of the TVP-VAR model with stochastic volatility to avoid biased estimation since 

posterior estimates of stochastic volatilities are significant. This observation confirms the 

evidence introduced in the literature on the topic of this point. 

Three key important dates for stochastic volatilities of most of the food series are observed 

(1980, 1990 and 2008) and cyclical ups and downs are detected. These observations are in 

line in particular with those of Stock and Waston (2002) who qualify the 1980 period as the 

Great Moderation period, Koop and Korobilis (2010), Ciaiana and Kancs (2011) and Creti et 

al. (2013). As stated by Creti et al. (2013), the relatively increase in food volatility during the 

2007-2008 financial crisis reveals the phenomenon of commodity markets financialization. 

We observe that stochastic volatility of most of food series has over some sub-periods 

similar evolutions as the MSCI and crude oil. In fact, often when high volatilities are observed 

for MSCI index and crude oil prices, volatilities in food commodities returns are observed, 

but with different magnitude. This observation suggests that there is volatility transmission 

from MSCI and crude oil to food commodities. Our approach allows to test for that. 

Figure 2 also illustrates that agricultural products are more volatile than livestock products. 

This can be explained by the fact that production in agriculture takes time, so the supply 

cannot respond much to price changes in the short term, unless stocks are available. 

 

Please insert Figure 2 about here 

  

http://www.sciencedirect.com/science/article/pii/S0306919211000856
http://www.sciencedirect.com/science/article/pii/S0306919211000856
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4.2. Impulse responses estimation 

Impulse responses for the TVP-VAR model are computed by fixing an initial shock size equal 

to the time-series average of stochastic volatility for each commodity over the whole sample 

period and then using the simultaneous relations at each point in time. Hence, time-varying 

volatility contributes to the VAR estimation, identifying the structural shock with the 

appropriate variance of the shock size. The  

The simultaneous relations of the structural shock are presented in figure 4 in Appendix 2. 

Posterior means and ± 1 standard deviation confidence intervals show that the 

simultaneous relations of the structural shock are not significantly time varying in all cases. 

Figures from 1 to 9 in Appendix 4 show the impulse responses for food commodities price 

returns following a shock on crude oil price returns and MSCI stock index price returns 

obtained from the constant parameter VAR model, SVAR model and the TVP-VAR model. 

Time varying responses to shocks for 3 months, 6 months and one year horizon are 

presented3. Horizontal axes indicate the number of months after shock and vertical axes 

represent the standardized responses to shocks for each variable. It is clear that there is 

significant variation of the impulse responses over time which supports applying the TVP-

VAR model. 

The results illustrated through these figures emphasize those of Deaton (1999) and Baffes 

(2007) regarding the adoption of individual commodities prices instead of indexes. In fact, 

although there are some common features between the different food commodities, some 

differences issued from particularities of each food can be detected among them. This is in 

accordance with Creti et al. (2013) findings that agree on the fact that the different types of 

commodities cannot be aggregated in a homogeneous asset class (Creti et al., 2013). 

General finding observed for all food commodities can be stressed. The first one corresponds 

to the immediately of the impact of a shock, either of crude oil returns or MSCI index 

returns, on food returns and its low amplitude. This impact is a short term one since it is 

absorbed within a period of six months. Our results support in part namely those of 

Nazlioglu et al. (2013) which show that the responses of a selection of agricultural 

                                                           
3 The red, purple and green lines respectively in charts of posterior means correspond to these time 
horizons. 
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commodity prices (wheat, corn, soybeans, and sugar) to oil prices shocks are immediate and 

not permanent (they are absorbed in about a month). This lack of returns persistence to a 

shock indicates a rapid market response mitigating a shock's effect. Such a response 

supports the theory indicating decentralized perfectly competitive markets are efficient in 

responding to price signals (Zhang et al., 2010). 

Mainly two important dates have been identified for most of food commodities during 

which the impact on food commodities returns of either crude oil or MSCI index returns 

shocks is stressed. The first one is related to the great moderation period (the beginning of 

the 1980s). The second one corresponds to the financial crisis (2008 year) which highlights 

the phenomenon of food commodities financialization. Increases on the impact of crude oil 

shocks in most of food commodities in 2008 year are also explained by the significant 

expansion of biofuel production. These findings are in line with most of previous works, in 

particular those of Ciaiana and Kancs (2011). 

For all food commodities, it is shown that the impacts of shocks can be biased if assessed 

through VAR model with constant parameters and constant volatility. The large 95% 

confidence intervals show that impulse responses obtained by applying constant VAR and 

SVAR models are not significant in all cases. Hence, the assumption of constant parameters 

over the horizon of the impulse responses induced by constant VAR model biased the 

results. This observation outlines the importance of considering a VAR model with time 

varying parameters and stochastic volatility. 

The implementation of the TVP-VAR model with stochastic volatility has allowed the 

identification of structural shocks with the appropriate variance of shocks’ size. This is 

illustrated through the amplitude of the impacts which is more significant once evaluated 

based on TVP-VAR model with stochastic volatility. Hence, the recourse to the TVP-VAR 

model with stochastic volatility has allowed us to avoid the misspecification of the dynamics 

of VAR model parameters. 

4.3. Volatility spillovers estimation 

In order to assess volatility spillovers, we follow the approach adopted by Diebold and Yilmaz 

(2012) based on a generalized vector autoregressive framework in which forecast-error 

variance decompositions are invariant to the variable ordering. This approach allows 

http://www.sciencedirect.com/science/article/pii/S0306919211000856
http://www.sciencedirect.com/science/article/pii/S0306919211000856
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measuring both the total and directional volatility spillovers (from/to a particular market). 

Table 3 below presents volatility spillover tables. 

 

Please insert Table 3 about here 

 

For each table, the ijth entry represents the estimated contribution to the forecast error 

variance of market i coming from innovations to market j. It is clear from this table that both 

the total and directional volatility spillovers are low. The directional to others rows of the 

volatility spillover table show that gross directional volatility spillovers are comparable. The 

directional from others columns of the volatility spillover table show that gross directional 

volatility spillovers from other markets are not very different. The directional volatility 

spillovers from crude oil to foods range between 0.01 (for Banana) and 1.44 (for Lamb). 

Those from MSCI to foods are between 0.23 (for Cocoa Beans) and 3.23 (for Barley and Fish). 

The total volatility spillover, which is a distillation of the various directional volatility 

spillovers into a single index, indicates that, on average, a percentage comprised between 

1.35% and 2.85% of the volatility forecast error variance in all three markets comes from 

spillovers.  

Our results confirm the findings in the literature stating that oil prices have been mentioned 

as an additional shock to food price via supply and demand channels (Thompson et al. 2009). 

In fact, an increase in oil prices results in an increase in input costs (like fertilizers, irrigation, 

and transportation) and an increase in demand for grains as biofuels having as a 

consequence an increase in food commodity prices. 

As mentioned above, results found through assessing only one single index for the full 

sample period indicate low total and directional spillovers. However, the application of this 

approach to markets which are volatile over time probably can lead to not considering 

potentially important cyclical movements in spillovers. We propose then to assess dynamic 

volatility spillovers over different time intervals through applying a rolling window approach. 

To do this, we estimate volatility spillovers using one month rolling sample. 

Our results for the total (non directional) volatility spillovers index over time presented in 

figure 1 in Appendix 3 allow measuring the contribution of spillovers of volatility shocks 
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across the three types of asset classes to the total forecast error variance. This figure shows 

that the total volatility spillover plot mostly fluctuates between 10% and 40% for each one of 

the sets considered composed each time of 3 types of assets (Oil, Food and MSCI stock). 

Several cycles can be identified namely in 1980, 1990 and the most important one 

corresponds to the financial crisis period (2007-2009).  

In order to take into account directional information, we estimate directional volatility 

spillovers from others and directional spillovers to others indexes using one month rolling 

windows approach. 

Directional volatility spillovers to each one of the assets coming from other assets are 

presented in figure 2 in Appendix 3. These spillovers vary obviously over time. Directional 

volatility spillovers to foods and oil markets are increasing in turbulent times relatively more 

than those to MSCI stocks. 

Figure 3 in Appendix 3 shows the directional volatility spillovers from each one of the assets 

(corresponding to energy, food and stocks markets) to others. These spillovers vary greatly 

over time. This figure also indicates that volatility spillovers from food and energy markets 

are smaller than those from stock markets. 

In order to consider the difference between volatility shocks transmitted from market i to 

market j and those transmitted from market j to i, we estimate the net pairwise volatility 

spillovers between these two markets. Figure 4 in appendix 3 shows these net pairwise 

volatility spillovers. Most of the time in our sample, the net pairwise volatility spillovers from 

MSCI stock to foods are positive and those from crude oil to foods are negative. Net pairwise 

volatility spillovers show that volatility from MSCI stock and crude oil markets are 

transmitted to all types of foods with similar ranges varying mostly between -20% and 20%. 

4.4. Implications for portfolios diversification 

Based on the fact that the benefits of diversification are most appreciated when risk market 

rises and investors tend to choose commodities as refuge instruments, we propose in this 

part to study the implications of food commodities’ sensitivity to oil and MSCI shocks on 

decisions taken by the investors regarding the risk management of their portfolios. We 

consider two hedged portfolios. The first one is a hedged portfolio of crude oil and food 

commodities. The second one is a hedged portfolio of MSCI and food commodities. 
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To determine the optimal weights of the portfolios and hedging ratios, we use the results 

issued from our TVP-VAR model on the subject of the Variance-Covariance matrix. We base 

our work on Kroner and Ng (1998) regarding the optimal weight of holding food 

commodities in a portfolio constructed of either crude oil or MSCI at time 𝑡. In their work, 

Arouri et al. (2011) adopt the same approach in order to analyze the optimal weights and 

hedge ratios for oil-stock portfolio holdings. 

We consider the following equation for the optimal weight of a portfolio composed of food 

and crude oil. 

𝑤𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 =

ℎ𝑡𝑂𝑖𝑙 − ℎ𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑

ℎ𝑡𝐹𝑜𝑜𝑑 − 2ℎ𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 + ℎ𝑡𝑂𝑖𝑙

 

on condition:  

𝑤𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 = �

0 𝑖𝑓 𝑤𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 < 0

𝑤𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 𝑖𝑓 0 ≤ 𝑤𝑡

𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 ≤ 1
1 𝑖𝑓 𝑤𝑡

𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 > 1
 

where: 

⎩
⎪
⎨

⎪
⎧ ℎ𝑡𝑂𝑖𝑙 ∶ conditional volatility of crude oil at time 𝑡   
ℎ𝑡𝐹𝑜𝑜𝑑 ∶ conditional volatility of food at time 𝑡          
ℎ𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 ∶ conditional covariance between               

crude oil and food at time 𝑡

  

The weight of food commodities in a portfolio constituted of food commodities and crude oil 

is equal to 1 − 𝑤𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑. 

The risk minimizing the hedge ratios for the portfolio composed of crude oil and food 

commodities, following Kroner and Sultan (1993) work, is considered as: 

𝛽𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 =

ℎ𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑

ℎ𝑡𝐹𝑜𝑜𝑑
 

The same thing is applied for the portfolio composed of food and MSCI stock assets. 
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𝑤𝑡
𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑 =

ℎ𝑡𝑀𝑆𝐶𝐼 − ℎ𝑡
𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑

ℎ𝑡𝐹𝑜𝑜𝑑 − 2ℎ𝑡
𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑 + ℎ𝑡𝑀𝑆𝐶𝐼

 

𝛽𝑡
𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑 =

ℎ𝑡
𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑

ℎ𝑡𝐹𝑜𝑜𝑑
 

Figures from 1 to 9 in Appendix 5 show the time-varying optimal hedge ratios. These hedge 

ratios are not stable and have large fluctuations, requiring the hedgers to frequently adjust 

their futures positions. In the table 4 below, we summarize the average values obtained 

regarding the optimal portfolios weights and hedge ratios along time. 

 

Please insert Table 4 about here 

 

As shown in table 4, the hedge ratios are typically low, suggesting that hedging effectiveness 

involving food and crude oil or food and stocks is quite good. They underline the fact that oil 

and stock assets should be an integral part of a diversified portfolio of food. Thus, inclusion 

of crude oil or stocks in a diversified portfolio of food commodities increases the risk-

adjusted performance of the resulting portfolio. 

In a 1$ portfolio of crude oil and food, the optimal weights range from 17,6% (Banana) to 

71,1% (Beef). It means that for a 1$ portfolio of crude oil and Banana, 17,6 cents should be 

invested in crude oil and the remainder (82,4 cents) should be invested in Banana. However 

in a 1$ portfolio of crude oil and Beef, the majority of the investment has to be done in 

crude oil (71,1 cents). Table 4 shows also that the optimal portfolios weights for a portfolio 

composed of crude oil and food are comparable for each type of food, except for the 

plantation and forestry products where the investment in Banana is much more important 

than for Cocoa Beans and Ground nuts.  

In a 1$ portfolio of stocks and food, the optimal weights are comprised between 8,7% 

(Banana) and 59,4% (Beef). It is also notable, when comparing the optimum weights of the 

two portfolios that investors have to invest more in crude oil than in stocks. We notice also a 

similarity of the estimates of the optimal portfolios weights into each category of food, 

except for the Banana. 
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Hedge ratios are negative for the portfolios composed of crude oil and Maize, crude oil and 

Banana, stocks and Banana, and stocks and Cocoa Beans. This reflects the fact that spot and 

futures prices may move in opposite direction in short run (Tong, 1996). It requires the 

hedger to go long in futures market to hedge the long spot position. 

In order to check the effectiveness of the portfolio diversification, we study the realized 

hedging errors determined by Ku et al. (2007). 

𝐻𝐸 = �
𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑 − 𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑

𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑
� 

where: 

⎩
⎨

⎧
𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑: variance of the returns on the Oil − Food

or MSCI − Food portfolios
𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑: variance of the returns on the Oil           

or MSCI portfolios

  

We use for the allocation of each portfolio the optimum weights previously determined. 

Table 5 below summarizes the results obtained for these hedge ratios. 

A higher HE ratio indicates greater hedging effectiveness in terms of the portfolio’s variance 

reduction, which thus implies that the associated investment method can be deemed a 

better hedging strategy. 

 

Please insert Table 5 about here 

 

The highest hedge effectiveness ratio obtained for a portfolio composed of (Crude oil, Crops) 

is reached with the introduction of Maize (56%). Thus, we can say that Maize provides the 

most useful risk management tool for hedging and for portfolio diversification among the 

crops considered in this paper. Hedge effectiveness for portfolios composed of (MSCI, 

Livestock products) are comparable and high (from 70,9% to 81,8%). This indicates that 

introduction of Livestock products into a portfolio of Crude oil allows to significantly improve 

its risk return characteristics. Negative estimated hedge effectiveness have been found for 
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the (Crude oil, Banana) portfolio and for almost all the (MSCI, Food) portfolios. This may be 

because of higher futures return variance. 

5. Conclusion 

This paper highlights that the time-varying volatility contributes to the VAR estimation since 

it allows identifying the structural shock with the appropriate variance of the shock size. 

Therefore, the adoption of a TVP-VAR model where the sources of time variation are both 

the coefficients and the variance covariance matrix of the innovations has allowed us to 

avoid biased estimation of the parameters. A general finding from this paper points to the 

fact that, although there are some common features between the different food 

commodities, some differences issued from particularities of each food can be detected 

among them. 

The findings identify the presence of low volatility spillover from crude oil or MSCI returns to 

most of food returns. Hence, policy makers and investors can forecast food prices and their 

volatilities through the information about crude oil or MSCI index. In terms of shocks’ 

transmission from crude oil or MSCI to food commodities, impulse responses show that the 

impact of these shocks is immediate and a short run one since it is absorbed within a six 

months period. This indicates a rapid market response mitigating a shock's effect. The results 

highlight also the key role played by the 2007-2008 financial crisis in emphasizing shocks’ 

transmission from crude oil or stock markets to foods. 

Net pairwise volatility spillovers show that most of time, and for all types of foods, 

volatilities spillover positively from MSCI stock to foods and negatively from crude oil to 

foods with similar ranges varying between -20% and 20%. Understanding shocks 

transmission and volatility spillovers among the different markets provides investors with 

useful information which can be considered in their decisions related to optimal portfolio 

allocation.  

Regarding the diversification of portfolios, hedge ratios are found to be not stable and have 

large fluctuations, requiring the hedger to frequently adjust their futures positions. The 

mean values indicate typically low hedge ratios, suggesting that hedging effectiveness 

involving food and crude oil or food and stocks is quite good. Thus, inclusion of crude oil or 
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stocks in a diversified portfolio of food commodities increases the risk-adjusted performance 

of the resulting portfolio. An extension to this work could be through the adoption of large 

TVP-VAR models or TVP-FAVAR (Factor Augmented VAR) models. To put forward on this 

work, a study of prices transmission between different food commodities and cross 

countries can be achieved. The present work can also be extended in order to discuss about 

the different drivers of food commodity prices which can be summarized on market-specific 

factors, broad macroeconomic determinants, speculative components, and weather 

variables and in order to quantify their impact.  
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Food_Index : Food Price Index, 2005 = 100, includes Cereal, Vegetable Oils, Meat, Seafood, Sugar,  
Bananas and Oranges Price Indices 
Energy_Index : Fuel (Energy) Index, 2005 = 100, includes Crude oil, Natural Gas and Coal Price Indices 

Figure 1: Evolution of food and energy price indexes 
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Figure 2: Posterior estimates of stochastic volatility of structural shock 
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Table 1: Augmented Dickey-Fuller Test 

 Prices Returns 
p-value Test statistic p-value Test statistic 

Banana 0.160 -2.988 0.01 -11.139 
Barley 0.441 -2.323 0.01 -6.804 
Beef 0.986 -0.395 0.01 -7.999 
CocoaBeans 0.519 -2.137 0.01 -7.095 
Rapeseed Oil 0.069 -3.309 0.01 -6.829 
Fish 0.625 -1.887 0.01 -6.379 
Ground Nuts 0.120 -3.082 0.01 -7.590 
Lamb 0.272 -2.723 0.01 -6.938 
Maize 0.765 -1.554 0.01 -7.798 
Crude Oil 0.788 -1.500 0.01 -8.486 
MSCI 0.159 -2.990 0.01 -6.605 
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Table 2: Estimation results of selected parameters in the TVP-VAR model 
 

        Parameter   Mean      Stdev       95%L     95%U  GewekeInef. 
�∑𝛽�1        0.0045    0.0003    0.0039    0.0052    0.036    11.20 
�∑𝛽�2        0.0046    0.0003    0.0040    0.0053    0.607    11.88 
(∑𝑎)1        0.0498    0.0101    0.0334    0.0723    0.595    88.92 
(∑𝑎)2        0.0518    0.0103    0.0349    0.0753    0.372    52.11 
(∑ℎ)1        0.3963    0.0601    0.2940    0.5286    0.800    35.33 
(∑ℎ)2        0.4186    0.0825    0.2797    0.6044    0.240    70.45 

(a) Estimates for the set (Crude Oil, Maize, MSCI) 

        Parameter   Mean      Stdev       95%L     95%U  GewekeInef. 
�∑𝛽�1      0.0045    0.0003    0.0039    0.0052    0.032     5.85 
�∑𝛽�2      0.0045    0.0003    0.0039    0.0052    0.678     7.21 

  (∑𝑎)1      0.0573    0.0130    0.0368    0.0863    0.406    84.96 
 (∑𝑎)2       0.0515    0.0105    0.0347    0.0763    0.001    65.15 
 (∑ℎ)1       0.3962    0.0571    0.2921    0.5195    0.141    36.60 

            (∑ℎ)2       0.4545    0.0791    0.3135    0.6246    0.450    48.93 
(b) Estimates for the set (Crude Oil, Barley, MSCI) 

         Parameter    Mean     Stdev      95%L      95%U   GewekeInef. 
�∑𝛽�1        0.0045    0.0003    0.0039    0.0052    0.454     8.58 
�∑𝛽�2        0.0045    0.0003    0.0039    0.0052    0.871     7.92 

  (∑𝑎)1        0.0526    0.0115    0.0345    0.0785    0.116    65.75 
(∑𝑎)2         0.0490   0.0100    0.0333    0.0730    0.979    53.06 
 (∑ℎ)1        0.3905    0.0594    0.2827    0.5182    0.407    49.36 
(∑ℎ)2        0.3068    0.0584    0.2095    0.4373    0.000    69.22 

(c) Estimates for the set (Crude Oil, Cocoa Beans, MSCI) 

        Parameter    Mean     Stdev      95%L      95%U   GewekeInef. 
�∑𝛽�1       0.0045    0.0003    0.0039    0.0052    0.339     6.36 
�∑𝛽�2       0.0045    0.0003    0.0039    0.0052    0.001     6.60 
(∑𝑎)1        0.0412    0.0071    0.0297    0.0573    0.389    52.80 
(∑𝑎)2        0.0482    0.0099    0.0327    0.0723    0.824    72.07 
(∑ℎ)1        0.3902    0.0548    0.2898    0.5091    0.061    27.98 
(∑ℎ)2        0.4210    0.0665    0.3020    0.5616    0.610    39.48 

(d) Estimates for the set (Crude Oil, Beef, MSCI) 

         Parameter    Mean     Stdev      95%L      95%U   GewekeInef. 
�∑𝛽�1       0.0045    0.0003    0.0039    0.0052    0.561     8.49 

 �∑𝛽�2       0.0045    0.0003    0.0039    0.0052    0.000    12.56 
 (∑𝑎)1        0.0441    0.0080    0.0304    0.0614    0.000    51.03 
 (∑𝑎)2        0.0515    0.0115    0.0336    0.0783    0.001    52.07 
 (∑ℎ)1        0.3892    0.0550    0.2881    0.5031    0.001    29.20 
(∑ℎ)2        0.5122    0.0847    0.3639    0.7040    0.740    45.58 

(e) Estimates for the set (Crude Oil, Fish, MSCI)  
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        Parameter    Mean     Stdev      95%L      95%U   GewekeInef. 
�∑𝛽�1        0.0045    0.0003    0.0039    0.0052    0.992    11.52 
�∑𝛽�2        0.0045    0.0003    0.0039    0.0052    0.568     5.00 
(∑𝑎)1        0.0482    0.0097    0.0335    0.0714    0.924    48.79 
(∑𝑎)2        0.0497    0.0108    0.0338    0.0765    0.944    67.62 
(∑ℎ)1        0.4056    0.0581    0.2978    0.5278    0.974    27.61 
(∑ℎ)2        0.6282    0.0814    0.4771    0.7963    0.629    23.61 

(f) Crude Oil, Rapeseed Oil, MSCI 

        Parameter   Mean      Stdev       95%L     95%U  GewekeInef. 
�∑𝛽�1        0.0045    0.0003    0.0039    0.0052    0.535     6.67 
�∑𝛽�2        0.0045    0.0003    0.0039    0.0052    0.050     8.74 
(∑𝑎)1        0.0430    0.0075    0.0307    0.0598    0.522    54.53 
(∑𝑎)2        0.0514    0.0104    0.0347    0.0747    0.536    69.62 
(∑ℎ)1        0.3881    0.0577    0.2862    0.5136    0.750    42.87 
(∑ℎ)2        1.0828    0.1108    0.8801    1.3112    0.472    42.18 

(g) Crude Oil, Ground Nuts, MSCI 

(Mean : posterior means, Stdev : standard deviations, 95%L : 95% Lower credible interval limit, 95%U : 95% 
Upper credible interval limit, Geweke : Geweke convergence diagnostics statistics, Inef : inefficiency) 
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Table 3: Volatility spillover tables 

 MSCI Maize Crude Oil Directional form 
others 

MSCI 99.41 0.014 0.57 0.584 
Maize 1.85 97.47 0.67 2.52 
Crude Oil 2.00 0.13 97.87 2,13 
Directional to others 3.85 0.14 1.24  

Directional including own 103.26 97.61 99.11 Total spillover 
index 1.74% 

 

 MSCI Barley Crude Oil Directional form 
others 

MSCI 99.22 0.29 0.49 0.78 
Barley 3.23 95.91 0.87 4.1 
Crude Oil 1.92 1.74 96.34 3.66 

Directional to others 5.15 2.03 1.36  
Directional including 
own 104.37 97.94 97.7 Total spillover 

index 2.85% 
 

 MSCI Rapeseed 
Oil Crude Oil Directional form 

others 
MSCI 99.40 0.034 0.56 0.59 
Rapeseed Oil 0.89 99.08 0.03 0.92 
Crude Oil 2.04 0.83 97.13 2.87 
Directional to others 2.93 0.86 0.59  

Directional including own 102.33 99.94 97.72 Total spillover 
index 1.46% 

 

 MSCI Banana Crude Oil Directional form 
others 

MSCI 99.37 0.08 0.56 0.64 
Banana 0.80 99.19 0.01 0.81 

Crude Oil 2.03 0.57 97.40 2.6 

Directional to others 2.83 0.65 0.57  

Directional including own 102.2 99.84 97.97 Total spillover 
index 1.35% 
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 MSCI Cocoa 
Beans Crude Oil Directional form 

others 
MSCI 99.22 0.28 0.50 0.78 
Cocoa Beans 0.23 99.72 0.05 0.28 
Crude Oil 2.07 1.45 96.48 3.52 
Directional to others 2.30 1.73 0.55  

Directional including own 101.52 101.45 97.03 Total spillover 
index 1.53% 

 MSCI Ground 
nuts Crude Oil Directional form 

others 
MSCI 98.84 0.76 0.4 1.16 
Ground nuts 1.00 98.94 0.06 1.06 
Crude Oil 2.17 2.70 95.13 4.87 
Directional to others 3.17 3.46 0.46  

Directional including own 102.01 102.4 95.59 Total spillover 
index 2.36% 

 

 MSCI Lamb Crude Oil Directional form 
others 

MSCI 99.39 0.02 0.59 0.61 
Lamb 1.09 97.47 1.44 2.53 
Crude Oil 2.02 0.68 97.30 2.70 
Directional to others 3.11 0.70 2.03  

Directional including own 102.5 98.17 99.33 Total spillover 
index 1.95% 

 

 MSCI Beef Crude Oil Directional form 
others 

MSCI 99.40 0.05 0.55 0.60 
Beef 1.96 97.66 0.38 2.34 
Crude Oil 2.01 1.40 96.59 3.41 
Directional to others 3.97 1.45 0.93  

Directional including own 103.37 99.11 97.52 Total spillover 
index 2.12% 

 

 MSCI Fish Crude Oil Directional form 
others 

MSCI 99.21 0.24 0.54 0.78 
Fish 3.23 96.60 0.17 3.4 
Crude Oil 1.97 0.28 97.74 2.25 
Directional to others 5.20 0.52 0.71  

Directional including own 104.41 97.12 98.45 Total spillover 
index 2.14% 
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Table 4: Optimal portfolios weights and hedge ratios 

 𝑤𝑡
𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 𝛽𝑡

𝑂𝑖𝑙,𝐹𝑜𝑜𝑑 𝑤𝑡
𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑 𝛽𝑡

𝑀𝑆𝐶𝐼,𝐹𝑜𝑜𝑑 

Crops 
Maize 0,628 - 0,045 0,430 0,013 
Barley 0,560 0,103 0,297 0,085 
Rapeseed Oil 0,512 0,032 0,347 0,014 

Plantation 
and forestry 
products 

Banana 0,176 - 0,032 0,087 - 0,010 
Cocoa Beans 0,600 0,169 0,356 - 0,002 
Ground nuts 0,632 0,058 0,476 0,015 

Livestock 
products 

Lamb 0,693 0,243 0,538 0,136 
Beef 0,711 0,159 0,594 0,039 
Fish 0,679 0,193 0,516 0,139 
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Table 5: Hedge effectiveness 

 Oil-Food Portfolio MSCI-Food Portfolio 
Variance (%) HE (%) Variance (%) HE (%) 

Maize 0,345 0,560 0,345 - 0,747 
Barley 0,532 0,322 0,532 - 1,694 
Rapeseed Oil 0,740 0,057 0,740 -2,748 
Banana 3,28 - 3,181 3,28 - 15,611 
Cocoa Beans 0,372 0,526 0,372 - 0,884 
Ground nuts 0,652 0,169 0,652 - 2,302 
Lamb 0,184 0,765 0,184 0,068 
Beef 0,143 0,818 0,143 0,276 
Fish 0,228 0,709 0,228 - 0,155 
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Appendix 1 

Commodities list: 

• Bananas, Central American and Ecuador, FOB U.S. Ports, US$ per metric ton, 

• Barley, Canadian no.1 Western Barley, spot price, US$ per metric ton, 

• Beef, Australian and New Zealand 85% lean fores, CIF U.S. import price, US cents per pound, 

• Cocoa beans, International Cocoa Organization cash price, CIF US and European ports, US$ per 

metric ton, 

• Rapeseed oil, crude, fob Rotterdam, US$ per metric ton, 

• Fishmeal, Peru Fish meal/pellets 65% protein, CIF, US$ per metric ton, 

• Groundnuts (peanuts), 40/50 (40 to 50 count per ounce), cif Argentina, US$ per metric ton, 

• Lamb, frozen carcass Smithfield London, US cents per pound, 

• Maize (corn), U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, US$ per metric ton, 

• Crude Oil (petroleum), Price index, 2005 = 100, simple average of three spot prices, 
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Appendix 2 

 

Figure 1: Histogram of return series 
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Figure 2: Food commodities, energy commodities and MSCI index prices for the period 1980-2012 (Source: IMF and MSCI Company) 
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Maize Barley Rapeseed Oil 

    

Banana  Cocoa Beans  Ground nuts  

    
Lamb  Beef  Fish  

Figure 3: MCMC estimation results 
(sample autocorrelations, sample paths and posterior densities) 
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Crude oil, Maize, MSCI Crude oil, Barley, MSCI Crude oil, Rapeseed Oil, MSCI 

   
Crude oil, Banana, MSCI Crude oil, Cocoa Beans, MSCI Crude oil, Ground nuts, MSCI 
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Crude oil, Lamb, MSCI Crude oil, Beef, MSCI Crude oil, Fish, MSCI 

Figure 4: Simultaneous relation posterior estimates 

  



43 
 

Appendix 3 

 
Total volatility spillovers (Crude oil, Maize, MSCI) 

 
Total volatility spillovers (Crude oil, Barley, MSCI) 

 
Total volatility spillovers (Crude oil, Rapeseed Oil, MSCI) 

 
Total volatility spillovers (Crude oil, Banana, MSCI) 

 
Total volatility spillovers (Crude oil, Cocoa Beans, MSCI)  

Total volatility spillovers (Crude oil, Ground nuts, MSCI) 

 
Total volatility spillovers (Crude oil, Lamb, MSCI)  

Total volatility spillovers (Crude oil, Beef, MSCI) 
 

Total volatility spillovers (Crude oil, Fish, MSCI) 

Figure 1: Total volatility spillovers (in each set composed of 3 types of asset classes: Energy, Food and Stocks) 
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To MSCI To Maize To crude oil 
Directional volatility spillovers to each asset of the set 

(Crude oil, Maize, MSCI) 

 
To MSCI To Barley To crude oil 

Directional volatility spillovers to each asset 
(Crude oil, Barley, MSCI) 

 
To MSCI To Rapeseed oil To crude oil 

Directional volatility spillovers to each asset 
(Crude oil, Rapeseed Oil, MSCI) 

 
To MSCI To Banana To crude oil 
Directional volatility spillovers to each asset from others 

(Crude oil, Banana, MSCI) 

 
To MSCI To Cocoa Beans To crude oil 

Directional volatility spillovers to each asset from others 
(Crude oil, Cocoa Beans, MSCI) 

 
To MSCI To Ground nuts To crude oil 
Directional volatility spillovers to each asset from others 

(Crude oil, Ground nuts, MSCI) 

 
To MSCI To Lamb To crude oil 
Directional volatility spillovers to each asset from others 

(Crude oil, Lamb, MSCI) 

 
To MSCI To Beef To crude oil 

Directional volatility spillovers to each asset from others 
(Crude oil, Beef, MSCI) 

 
To MSCI To Fish To crude oil 
Directional volatility spillovers to each asset from others 

(Crude oil, Fish, MSCI) 

Figure 2: Directional volatility spillovers to each asset from others 
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From MSCI From Maize From Crude oil 

Directional volatility spillovers from each asset to others 
(Crude oil, Maize, MSCI) 

 
From MSCI From Barley From Crude oil 

Directional volatility spillovers from each asset to others 
(Crude oil, Barley, MSCI) 

 
From MSCI From Rapeseed Oil From Crude oil 
Directional volatility spillovers from each asset to others 

(Crude oil, Rapeseed Oil, MSCI) 

 
From MSCI From Banana From Crude oil 

Directional volatility spillovers from each asset to others 
(Crude oil, Banana, MSCI) 

 
From MSCI From Cocoa Beans From Crude oil 

Directional volatility spillovers from each asset to others 
(Crude oil, Cocoa Beans, MSCI) 

 
From MSCI From Ground nuts From Crude oil 
Directional volatility spillovers from each asset to others 

(Crude oil, Ground nuts, MSCI) 

 
From MSCI From Lamb From crude oil 

Directional volatility spillovers from each asset to others 
(Crude oil, Lamb, MSCI) 

 
From MSCI From Beef From crude oil 

Directional volatility spillovers from each asset to others 
(Crude oil, Beef, MSCI) 

  
From MSCI From Fish From crude oil 
Directional volatility spillovers from each asset to others 

(Crude oil, Fish, MSCI) 

Figure 3 : Directional volatility spillovers from each asset to others  
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Net pairwise volatility spillovers 

(MSCI, Maize) 
Net pairwise volatility spillovers 

(Crude oil, Maize) 
 

 
Net pairwise volatility spillovers 

(MSCI, Barley) 
Net pairwise volatility spillovers 

(Crude oil, Barley) 
 

 
Net pairwise volatility spillovers 

(MSCI, Rapeseed oil) 
Net pairwise volatility spillovers 

(Crude oil, Rapeseed oil) 
 

 
Net pairwise volatility spillovers 

(MSCI, Banana) 
Net pairwise volatility spillovers 

(Crude oil, Banana) 
 

 

Net pairwise volatility spillovers 
(MSCI, Cocoa Beans) 

Net pairwise volatility spillovers 
(Crude oil, Cocoa Beans) 

 

 
Net pairwise volatility spillovers 

(MSCI, Lamb) 
Net pairwise volatility spillovers 

(Crude oil, Lamb) 
 

 
Net pairwise volatility spillovers 

(MSCI, Beef) 
Net pairwise volatility spillovers 

(Crude oil, Beef) 
 

 
Net pairwise volatility spillovers 

(MSCI, Fish) 
Net pairwise volatility spillovers 

(Crude oil, Fish) 
 

Figure 4: Net pairwise volatility spillovers 
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Appendix 4 

  

(a) Constant VAR model 

  

(b) Constant SVAR model 
 

 
 

(c) TVP-VAR model 

Figure 1: Impulse responses for the set Crude oil, Maize, MSCI 
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(a) Constant VAR model 

 
 

(b) Constant SVAR model 

 

(c) TVP-VAR model 

Figure 2: Impulse responses for the set Crude oil, Barley, MSCI 
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(a) Constant VAR model 

  

(b) Constant SVAR model 

 

(c) TVP-VAR model 

Figure 3: Impulse responses for the set Crude oil, Rapeseed oil, MSCI 
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(a) Constant VAR model 

  
(b) Constant SVAR model 

 

 
 

(c) TVP-VAR model 

Figure 4: Impulse responses for the set Crude oil, Banana, MSCI 
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(a) Constant VAR model 

  

(b) Constant SVAR model 
 

 
 

(c) TVP-VAR model 

Figure 5: Impulse responses for the set Crude oil, Cocoa beans, MSCI 
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(a) Constant VAR model 

  

(b) Constant SVAR model 

 

 

(c) TVP-VAR model 

Figure 6: Impulse responses for the set Crude oil, Ground nuts, MSCI 
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(a) Constant VAR model 

  

(b) Constant SVAR model 

 

(c) TVP-VAR model 

Figure 7: Impulse responses for the set Crude oil, Lamb, MSCI 
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(a) Constant VAR model 

 
 

(b) Constant SVAR model 
 

 
(c) TVP-VAR model 

Figure 8: Impulse responses for the set Crude oil, Beef, MSCI 
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(a) Constant VAR model 

  

(b) Constant SVAR model 

 

(c) TVP-VAR model 

Figure 9: Impulse responses for the set Crude oil, Fish, MSCI 
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Appendix 5 

  
Figure 1 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Maize 

  
Figure 2 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Barley 

  
Figure 3 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Rapeseed oil 
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Figure 4 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Banana 

  
Figure 5 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Cocoa Beans 

  
Figure 6 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Ground nuts 
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Figure 7 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Lamb 

  
Figure 8 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Beef 

  
Figure 9 : Dynamic hedge ratios of the portfolio Crude oil/MSCI, Fish 

 

 


