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Abstract

In this paper, we study and extend the optimal portfolio positioning
problem introduced by Brennan and Solanki (1981) and by Leland (1980).
For that purpose, we introduce mixtures of probability distributions to
model the log returns of �nancial assets. In this framework, we provide
and analyze the general solution for log return with mixture distributions,
in particular for the mixture Gaussian case. Our solution is characterized
for arbitrary utility functions and for any risk neutral probability. More-
over, we illustrate the solution for a CRRA utility and for the minimal
risk-neutral probability. Lastly, we compare our solution with the opti-
mal portfolio within ambiguity. Our results have signi�cant implications
to improve the management of structured �nancial portfolios.
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1 Introduction

Extreme market swings of recent years have been a rude reminder that investors
must be wary of unanticipated volatility spikes and large losses. They are also
at odds with the assumption that returns are normally distributed. A useful
rule of thumb to overcome these modeling de�ciencies is to introduce mixtures
of probability distributions in order to improve the estimation of asset returns
and in particular to better take account of risks. Mixture models arise in many
applications and in particular in �nance because they provide a convenient and
�exible statistical tool to better estimate multivariate distributions. Tittering-
ton et al. (1985) and Basford and McLachlan (1988) have established the main
properties about the statistical inference of mixture models. These mixtures are
introduced to decompose the overall density of a given random variable into a
weighted linear combination of probability density functions (pdf) which belong
to a given family of parametric distributions.

Typically, mixtures are introduced to take account of randomness about
the right probability distribution to describe asset returns. In that case, the
coe¢ cient of the mixture corresponding to a given law is the probability that
this distribution is the most convenient one. Many di¤erent methods have
been applied in estimating the parameters of Mixture Distributions (MD), in
particular Normal Mixture Distributions (NMD). One of these is the Expected
Maximization algorithm (EM). This method is based on the maximum likelihood
(see Basford and McLachlan, 1985; Leroux, 1992). This method has been used
in many applications such as neural networks, clustering and signal processing.
The EM algorithm (Dempster et al., 1977) is an iterative procedure to �nd the
maximum of likelihood functions.1

The �nancial literature illustrates many applications of such mixtures. For
example, in the case of a �nite mixture of Gaussian distributions, Ritchey (1990)
has introduced a NMD to involve stylized facts of non-normal returns character-
ized by fat-tailed and skewed distributions. In this case, we can evaluate options
by using weighted sums of Black-Scholes (B-S) solutions. Melick and Thomas
(1997) consider that the distribution of crude oil during the Gulf crises could
be derived from a mixture of three lognormal distributions. Then, they esti-
mate the implied pdf of prices for futures from American option prices. Other
studies as in Brigo and Mercurio (2000) prove that the risk-neutral prices can
be modeled by such mixture distributions. Brigo et al. (2002) assume that
the local volatility corresponds to a weighted sum of deterministic volatilities
and prove that this mixture describes a leptokurtic price process in a complete
market. Alexander (2004) tests a binomial NMD parameterization to capture
the short-term e¤ect and extends the model to consider also the long-term smile
e¤ect. This calibration has been tested to �t Euro-US dollar exchange rates.

Bellalah and Prigent (2002) decompose the empirical returns distribution as
in Bellalah and Lavielle (2002) to emphasize di¤erent phases of the market (a

1The �rst application of such mixtures was given by Pearson (1894).
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sudden fall in the bear part, a possibility of high increase in the bull phase and
stable market) to evaluate standard and exotic options. Explicit formulas of the
�Greeks�are then determined and compared with those obtained in the Black
and Scholes models. In�nite mixture models are also associated to many ARCH
type models and also to Lévy processes used to model the �nancial asset returns.
In fact, if the jump component of the underlying asset is a Poisson process
with �nite intensity, then the asset return is an in�nite mixture of Gaussian
distributions (see Cont and Tankov, 2003; Lesne and Prigent, 2001). Mixture
models are also introduced in portfolio optimization modeling and performance
measurement. Hentati and Prigent (2011) examine the maximization of a very
large class of performance measures within mixture probability distributions
(including in particular the Kappa measures).

The aim of this paper is to contribute to the previous literature by solving the
optimal positioning problem in the presence of mixture of distributions. Such
problem has been addressed in the partial equilibrium framework by Brennan
and Solanki (1981) and by Leland (1980). Our �ndings are based on the static
assumption. In this sense, we consider an investor who wants to maximize the
expected utility of his terminal wealth. Indeed, due to practical constraints (liq-
uidity, transaction costs...), �nancial portfolios are discretely rebalanced. For
example, the portfolio is rebalanced monthly. Additionally, it is important to
note that many �nancial products are based on contracts that must be fully
speci�ed at the initial date. This is the basis of structured portfolio manage-
ment (in France, it corresponds to about seven hundred funds, the so-called
"fonds à formule"). The value of the portfolio corresponds to a given function
of some portfolio of common assets, which is usually called the benchmark.2

As mentioned by Carr and Madan (2001), if the �nancial market contains all
the out-of-the-money European puts and calls of all strikes, the market is com-
plete. This assumption is justi�ed when there is a large number of option strikes
(options written on the S&P500 for example). This problem has been already
solved explicitly for Gaussian log returns by Brennan and Solanki (1981) and
Leland (1980) and further extended by Bertrand et al. (2001) when taking
account of insurance constraints. We extend previous results to the case cor-
responding to log return having mixture distributions, in particular Gaussian
mixtures. Several implications arise from the resolution of this problem. First,
the optimal portfolio is characterized for arbitrary utility functions and for any
choice of a particular risk neutral probability if the market is incomplete. Sec-
ond, the particular case of the CRRA utility and of the minimal risk-neutral
probability, introduced by Föllmer and Schweizer (1991) is scrutinized.3 Third,
under the risk-neutral probability, the solution is examined when the distrib-
ution of the risky asset return is a Gaussian mixture. Finally, and under the
same conditions, the optimal shape of the portfolio payo¤ is determined in the

2 Introduced by Leland and Rubinstein (1976), the portfolio insurance theory also considers
portfolio payo¤s which are functions of a benchmark.

3The minimal risk-neutral probability plays a key role in determining the locally quadratic
risk-minimizing strategies. I is used also in various other frameworks as well.
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case of optimal portfolio pro�le with ambiguity.

The paper is organized as follows. Section 2 recalls basic properties about
mixture distributions, in particular various examples of Gaussian mixtures. Ba-
sic �nancial examples are also provided. In Section 3, the optimal portfolio is
determined in the general optimal positioning framework, using the standard
expected utility maximization. When the mixture is due to the ambiguity with
respect to values of the probability distribution parameters, we compare also
our optimal solution to the optimal portfolio within ambiguity as introduced by
Gilboa and Schmeidler (1989). This approach allows to take account of aversion
to ambiguity. These results are detailed for CRRA utility functions. Section 4
concludes. Some of the proofs are gathered in Appendix.

2 Mixture distributions

2.1 Empirical studies

The Expected Maximization (EM) approach is a general iterative optimization
algorithm for maximizing a likelihood score function. This method has been
studied by Redner and Walker (1984), Basford and McLachlan (1985) and Ler-
oux (1992). It is based on two steps: The E-step and the M-step. However,
the determination of a global maximum is a more complex issue, since the like-
lihood may degenerate. Due to this drawback, Hathaway (1985) considers a
constrained Maximum Likelihood (ML) method and Redner and Walker (1984)
introduce the EM algorithm. The main advantage of this method allows the
increases of the log-likelihood function for each iteration of the EM until a sta-
tionary point has been reached.

For �nancial data, Melick and Thomas (1997) prove that the assumption of
a three Gaussian mixture for the oil price was justi�ed during the Golf�s war.
Bellalah and Lavielle (2002) show also that a three Gaussian mixture is a good
approximation of the empirical distribution for main stock �nancial indices.
They consider two methods: the �rst one is purely parametric and based on
the kernel estimation; the second one uses the (ML) and (EMA) methods. A
speci�c algorithm is also introduced to identify the regime changes.

2.2 De�nitions and general properties

Assume that each observation corresponds to a realization of a random vector
(X1; :::; Xn), with respective cumulative distribution functions (cdf) F1; :::; Fn.
Suppose, for instance, that each random component Xi has a distribution with
parameter �i and that �i denotes the i-weight of the mixture. Let � the global
mixture parameter:

� = (�1; :::; �n; �1; :::; �n):
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Then, the probability density function (pdf) associated to this mixture distrib-
ution is given by:

f (x;�) =
nX
i=1

�if(x; �i); (1)

where f(x;�) denotes the pdf of the mixture distribution. The weighting system
(�i)i corresponds to a convex combination. We have:

nX
i=1

�i = 1 and 8i 2 f1; :::; ng ; �i > 0:

One interpretation of such a mixture is the following one: let Y be a discrete
random variable with probability distribution de�ned as follows:

P (Y = i) = �i; for i = 1; ::::; n:

Assume for example that the conditional distribution of the vector X know-
ing Y is Gaussian and de�ned by:

LY=iX = N (mi;�i):

Then, the pdf of X satis�es: for any x 2 Rd,

fX (x) =
nX
i=1

�i
1p

(2�)d j�ij
exp

�
�1
2
(x�mi)

T��1i (x�mi)

�
: (2)

Thus, we get a Gaussian mixture with global parameter � = f�i;mi;�igni=1
since:

1. �i > 0; i = 1; :::; n and
nX
i=1

�i = 1:

2. mi 2 Rd and �i is a de�nite and symmetric matrix (d� d).

Previous example is a particular case of �nite mixture distributions. Other
cases can be introduced (see Everit and Hand, 1981; McLachlan and Peel, 2000).
In�nite mixture distributions can also be considered. First, the random variable
Y may have a countable set of values. Second, speci�c models can also be consid-
ered. For instance, to overcome some shortcomings of the Black-Scholes model,
in particular the impossibility to justify the smile e¤ect, stochastic volatility
models have been introduced by Hull and White (1987) and further extended
for example by Heston (1993). In that case, the log return has a mixture dis-
tribution (by conditioning with respect to the stochastic volatility). To take
account of sudden high variations, jumps can be introduced in the risky as-
set dynamics, modelled for example by a Poisson process independent from a
standard Brownian motion. Again, the log return distribution is a mixture (by
conditioning with respect to both the number an amplitudes of jumps). Other
in�nite Gaussian mixture distributions are also associated to Arch type models
in discrete-time or to switching models (see Frühwirth-Schnatter, 2006).
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An in�nite mixture distribution corresponds for instance to a pdf given by:

f (x; Y ) =

Z
f(x; y)g(y)dy; (3)

where g(:) itself is a pdf.
Suppose for example that the conditional distribution of the vector X know-

ing Y is given by:
LY=yX = N (my;�y):

Then, we deduce that the pdf of X satis�es: for any x 2 Rd,

fX (x) =

Z
1p

(2�)d j�yj
exp

�
�1
2
(x�my)

T��1y (x�my)

�
g(y)dy;

where g(:) is the pdf of Y . We conclude that X has a Gaussian mixture distri-
bution.
The pdf of such mixture is illustrated in next �gure for the S&P 500 index

(monthly returns from 30th January 1998 to 31 May 2011).
Figure 1 provides the �tting of the frequency histogram by a Gaussian pdf

(Mean about 0:2% and variance about 0:23%).

Figure 1. S&P 500 histogram

Figure 2 illustrates the approximation by a two-Gaussian mixture and its
comparison with the empirical pdf. The two Gaussian distributions N (mi; �

2
i )

satisfy: m1 = �3:7%; �21 = 0:31% and m2 = 1:84%; �22 = 0:11%: The weights
are given by: �1 ' 30% and �2 ' 70%.
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Figure 2. Two-Gaussian mixture

Finally, Figure 3 provides the three-Gaussian mixture approximation with
m1 = �4:96%; �21 = 0:26%, m2 = 0:94%; �22 = 0:064% and m3 = 6:52%; �23 =
0:023%: The weights are given by: �1 ' 25:15%, �2 ' 61:53% and �3 ' 13:32%.

Figure 3. Three-Gaussian mixture

2.3 Basic example

We suppose that the underlying asset dynamic is such that:

dSt
St

= �Y dt+ �Y dWt
; (4)
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where Y denotes a random discrete variable, independent from the Brownian
motion W . Using these assumptions, we get:

St = S0 exp

��
�Y �

1

2
�2Y

�
t+ �YWt

�
: (5)

The random variable Y can be viewed as a factor that determines the drift
and volatility of the risky asset. The variable Y can be for instance a macro-
economic variable that is exogenous with respect to the �nancial market. It can
also correspond to randomness of trading frequency (as proved in Appendix 1),
which is in line with order book dynamics. Such situation arises from momen-
taneous suspension of balance of supply and demand. Another interpretation
of variable Y comes from ambiguity about the choice of probability distribution
parameters.

We get a �nite Gaussian mixture, since the logarithm Xt of the return of St
satis�es:

P [Xt � x] = P [mY t+ �YWt � x]

=

n or 1X
i=1

P [myit+ �yiWt � x jY = yi ]P [Y = yi] ;

where mY = �Y � 1
2�

2
Y .

Thus, the pdf fXt
of Xt is given by:

fXt(x) =
@P [Xt � x]

@x
=

n or 1X
i=1

@P [myit+ �yiWt
� x]

@x
P [Y = yi] : (6)

By identifying P [Y = yi] to the coe¢ cient �i and by setting myi = mi,
�yi = �i, we deduce that the pdf fXt of Xt is a convex combination of Gaussian
pdf f(x; �i;t) since we have:

fXt
(x) =

n or 1X
i=1

�if(x; �i;t) with �i;t = (mit; �i
p
t): (7)
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3 Optimal positioning

3.1 General payo¤ function

The optimal portfolio positioning problem has been addressed by Leland (1980),
and Brennan and Solanki (1981). The portfolio value is de�ned as a function
of a given benchmark. Its payo¤ maximizes the investor�s expected utility. In
what follows, we solve the optimal positioning problem when the risky logreturn
distribution is a mixture of distributions, in particular a Gaussian mixture.
The mixture is modelled by a random variable Y , as illustrated in previous
section. The investor maximizes the expected utility of his wealth at maturity.
Additionally, this latter one is a function of both the risky asset value ST at
maturity T and of the conditioning random variable Y that determines the
weighting of the mixture.

MaxhE [U [h(ST ; Y )]] ;

where h(ST ; Y ) denotes the portfolio value at maturity T and the utility function
U is assumed to be twice di¤erentiable, strictly concave and non-decreasing.

3.1.1 The risk-neutral probability.

In what follows, we assume that the random variable Y has a �nite or countable
set of values4 . The pdf of ST is a mixture given by:

fST (s) =

n or 1X
i=1

�if(s; yi); (8)

with P [Y = yi] = �i and where f(s; yi) denotes the conditional pdf of ST eval-
uated at time s, knowing Y = yi.

We assume that the option prices are computed by taking account of the ran-
dom variable Y . It means that all investors agree on the additional randomness
due to Y . In that case, the pdf g of dQdP with respect to the �-algebra generated
by ST and Y has the form g(ST ; Y ) and satis�es the following relations:

g(:; :) � 0 (positivity), (9)
n or 1X
i=1

�i

Z
f(s; yi)g(s; yi)ds = 1 (g is a pdf), (10)

n or 1X
i=1

�i

Z
s f(s; yi)g(s; yi)ds = S0e

rT (risk neutrality). (11)

4The case where Y has a continuous distribution with pdf can be considered as well. In
that case, the pdf of ST can be expressed as in Relation (3).
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A special case: The density g corresponds to the density of the minimal
martingale measure. The concept of minimal equivalent martingale measure bP
has been introduced by Föllmer and Schweizer (1991) to obtain hedging strate-
gies which are optimal for quadratic risk-minimization. Schweizer (1992) shows
that the induced valuation process V̂0 = E bP [H] can be viewed as the intrinsic
value process of the claim H and that it corresponds to a certain risk-neutral
approach to option valuation (see Appendix 2 for explicit determination).

3.1.2 The optimal portfolio pro�le

We have to solve the following optimization problem, under the budget con-
straint:

MaxhE [U [h(ST ; Y )]] ;

with

V0 = e�rTE [h(ST ; Y )g(ST ; Y )] :

Proposition 1 Under previous assumptions, the optimal portfolio value is given
by:

h�(ST ; Y ) = J [�g(ST ; Y )] ; (12)

where J denotes the inverse of the marginal utility U 0 and � is the Lagrange
parameter associated to the budget constraint.

Proof. To simplify the presentation, we suppose as usual that the function
h ful�ls:

n or 1X
i=1

�i

Z
h2(s; yi)f(s; yi)ds <1.

Setting XT = (ST ; Y ); it means that h 2 L2(R2; PXT
(ds; dy)) which is the

set of the measurable functions with squares that are integrable on R2 with
respect to the joint distribution PXT

(ds; dy).

A new functional �U is associated to the utility function U . It is de�ned on
the space L2(R2; PXT

(ds; dy)) by:

For any Z 2 L2(R2; PXT
(ds; dy)); �U (Z) = EPXT [U(Z)]:

�U is usually called the Nemitski functional associated with U (see for ex-
ample Ekeland and Turnbull (1983) for de�nition and basic properties). From
the properties of the utility function U , the Nemitski functional �U is concave
and di¤erentiable on L2(R2; PXT

) (the Gâteaux-derivative exists).

Additionally, the budget constraint is a linear function of h. So there exists
exactly one solution h�. h� is the solution of @L@h = 0 where the Lagrangian L is
de�ned by:

L(h; �) =

Z
R2

[U(h(s; y))]PXT
(ds; dy)+ �

�
V0 �

Z
R2

h(s; y)g(s; y)PXT
(ds; dy)

�
;
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where � is the Lagrange multiplier associated to the budget constraint. There-
fore, h� satis�es: U 0(h�) = �g which implies h� = J(�g).

Therefore, the optimal payo¤ is a function of both variables ST and Y . From
a practical point of view, it means that hedging such portfolio would imply to
trade on options written in particular on Y , for example to use options on the
volatility (here �Y ).5

3.1.3 The optimal portfolio pro�le with ambiguity

Here, we assume that the investor has more ambiguity about future market
evolutions. Thus he faces uncertainty about probability distribution parameters
and introduce a family of distributions instead of an unique one. Contrary to
mixtures modelling, he does not match a given probability to each parameter.
For example, for ambiguity about normal distributions N (�; �), the investor
can assume that � and � respectively belong to subsets [�; �] and [�; �]. But he
does not introduce a speci�c probability distribution on these latter subsets.

The notion of "ambiguity" has been introduced by Ellsberg (1961). Gilboa
and Schmeidler (1989) have considered the so-called "maxmin expected util-
ity preferences", which assume the existence of multiple priors. The maxmin
expected utility criterion of Gilboa and Schmeidler (1989) corresponds to the
following optimization problem:

Maxh2H MinP2� (EP [U (h(ST ))]) ; (13)

where H denotes the set of possible payo¤s. The set of multiple probability pri-
ors� correspond to ambiguity with respect to parameter y of a given probability
distribution Py which corresponds to the law when the random variable Y takes
the value y (see basic example). However, the main di¤erence with previous
mixture case is that the weights �i are not taken into account: the probability
distribution of Y has no impact on the �nal result except its support.

Proposition 2 If EPy [U (h(ST ; Y ))] is continuous with respect to parameter y
of Py for all payo¤s h in a given set H and if � is a compact set, then the
optimal solution h�A of Problem (13) corresponds to an optimal solution of the
standard expected utility maximization for a given parameter y�.
Proof. See Ben Ameur and Prigent (2013).

Remark 3 Contrary to the mixture case, the optimal portfolio under ambiguity
corresponds to an optimal standard portfolio for a given value of the random
variable Y . For example, if the distribution of the risky asset return ST =S0
is Lognormal conditionally to Y , then the optimal portfolio under ambiguity is
determined within a lognormal framework whereas the optimal portfolio within
mixture corresponds to a mixture of Gaussian distributions, thus with skewness
and fatter tails.

5See Carr and Madan (2001) and Prigent (2007) for the determination of the hedging
strategy in the standard static case.
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3.2 Basic example

3.2.1 Optimal positioning for the basic example

Consider the risky asset dynamics as de�ned in (4):

dSt
St

= �Y dt+ �Y dWt
; (14)

where Y denotes a random variable, independent from the Brownian motionW .
Denote:

mY = �Y �
1

2
�2Y ; �Y =

�Y � r
�Y

(Sharpe ratio);

aY = �1
2
�2Y T +

�Y
�Y
mY T ; �Y =

�Y
�Y
; �Y = e

aY (S0)
�Y :

Then, we have:

WT =
ln
�
ST
S0

�
�mY T

�Y
:

We consider the minimal martingale measure bP to price options. The
��algebra F is generated by the Brownian motion W and the random vari-
able Y . We deduce (see Appendix 2) that the pdf g(ST ; Y ) of d

bP
dP with respect

to the �-algebra generated by Y and WT is given by:

g(s; y) = �
y
s��y :

Note that it corresponds also to special case (4). Indeed, knowing Y = y, we
recover the standard risk-neutral density of the Black and Scholes model.
Therefore, from Relation (12), we deduce that the optimal solution is equal

to:
h�(ST ; Y ) = J

h
� �Y S

��
Y

T

i
; (15)

where � is the Lagrange parameter associated to the budget constraint.
For instance, assume that the utility function is a power function U(x) =

x1�


1�
 (CRRA case) with relative risk aversion 
 > 0 and 
 6= 1.
Corollary 4 The optimal solution for the CRRA case is given by:

h�(ST ; Y ) = c:�
� 1



Y :S
�
Y



T ; (16)

where the power
�
Y


 of ST is equal to the Sharpe type ratio �Y =
�
Y
�r

�2Y
times the

inverse of the relative risk aversion 
. Applying budget constraint, the coe¢ cient
c is equal to

c =
V0e

rT

E

��
�Y S

��y
T

� 
�1



� : (17)

Note that:

E

��
�Y S

��y
T

� 
�1



�
= E

�
exp

�
1

2
�2Y T

1� 


2

��
: (18)
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3.2.2 Concavity-Convexity of the payo¤ for the CRRA case

Depending in particular on the value of Y , the power
�
Y


 is higher than 1 or
not. Therefore, the higher the Sharpe type ratio or the smaller the relative
risk aversion, the more convex the optimal payo¤ as function of the risky asset.
Indeed, the investor wants a convex payo¤ if the �nancial market has a good
performance (high Sharpe type ratio) and/or his relative risk aversion is low.
Such behavior allows to bene�t from potential market rises. On the contrary, if
the �nancial market is not su¢ ciently favorable (small Sharpe type ratio) and/or
his relative aversion is high, then the investor prefers to get higher returns for
bearish market than for bullish market. More precisely, we have:

Corollary 5 The optimal payo¤ is convex as soon as �
Y
> 
. Thus, the proba-

bility to get a convex payo¤ is equal to P [�
Y
> 
] = P [�Y �r

�2Y
> 
]. Consider the

particular case corresponding to randomness of trading frequency (see Appendix
1), where functions �(:) and �(:) are de�ned by: �(y) = �:y and �(y) = �:

p
y.

Then, the probability to get a convex payo¤ is equal to P [
�
�� �2


�
Y > r].6

Next �gure illustrates three main cases: (numerical assumptions: volatility
� = 20%; S0 = 100; V0 = 1000; T = 1 year and �nally relative risk aversion

 = 2).

501001502005001000150020002500mu=0.10mu=0.07mu=0.01

Figure 4. Optimal portfolio payo¤s as function of �Y .

- If � is relatively small (� = 1%), the optimal positioning leads to a de-
creasing payo¤ since the investor expect small returns of the risky asset.
- If � is moderate (� = 7%), the optimal positioning leads to an increasing

and concave payo¤ since the investor expect standard return values of the risky
asset.

6Assume for instance that the distribution of Y is uniform on [0:5; 1] and � = 18%; � =
17%; r = 3%. Then the probability to get a convex payo¤ is equal to 1 for an aggressive
investor (
 = 2), to 0:3 for a moderate investor (
 = 5) and �nally to 0 for a conservative
investor (
 = 10).
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- If � is relatively high (� = 10%), the optimal positioning leads to an
increasing and convex payo¤ since the investor expect high returns of the risky
asset and wants to bene�t from potential market rises.

3.2.3 The optimal portfolio pro�le with ambiguity for the CRRA
case

In what follows, we illustrate the role of the ambiguity for a CRRA utility
U(v) = v1�


1�
 and Gaussian mixture as described in (4). The set of multiple
priors � correspond to ambiguity with respect to parameter y. We assume that
� corresponds to y 2 [y; y] and that both functions �(y) and �(y) are continuous
with respect to y on [y; y].
Consider the maximin expected utility criterion of Gilboa and Schmeidler

(1989).

Corollary 6 The optimal payo¤ h�A with respect to the maximin expected utility
criterion is a power function of the risky asset. It is de�ned by:

h�A(s) = d:�
� 1



y� :S
�y�



T

where y� minimizes the absolute value of the Sharpe ratio �(y) = �(y)�r
�(y) and

d =
V0e
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h
exp

�
1
2�
2
y�T
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�i
Proof. Applying Proposition (2), we deduce that the optimal solution h�A

is the solution of the standard expected utility criterion for one particular value
y� in [y; y]. Thus, we have to solve the following minimization problem:

Miny2[y;y]E

�
U

�
c:�

� 1



y :S
�y



T

��
:

Using in particular (17) and (18), this problem is equivalent to:

Miny2[y;y]

 �
V0e

rT
�1�


1� 


!
exp

�
1

2
�2yT

1� 




�
:

Since previous function is increasing with respect to �2y, this problem is
equivalent to the minimization of the absolute value of the Sharpe ratio �(y).
Note that this result is similar to result of Chen and Epstein (2002) in the

continuous-time case, when � corresponds to the set �M � �y � M , with M
non negative constant. The main di¤erence is that here we consider that the
risk-neutral probability takes also account of the ambiguity. For the particular
case corresponding to randomness of trading frequency (see Appendix 1), we

have: �(y) = �:y and �(y) = �:
p
y. Thus, we have to minimize j�yj =

����:y�r�:
p
y

���.
Assuming for instance that �:y > r; the optimal solution corresponds to y� = y.
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In what follows, we illustrate numerically the optimal payo¤s for the three
cases: Gaussian, ambiguity and mixture. We use previous S&P 500 data. Recall
that, for the Gaussian case, the mean return is about 0:2% and the variance is
about 0:23%). For the three-Gaussian mixture case, we get: m1 = �4:96%; �21 =
0:26%, m2 = 0:94%; �

2
2 = 0:064% and m3 = 6:52%; �

2
3 = 0:023%: The weights

are given by: �1 ' 25:15%, �2 ' 61:53% and �3 ' 13:32%. The risk-free
rate r is assumed to be equal to 0:02=12 (monthly return). We consider two
relative risk aversion levels: weak risk aversion (
 = 0:3); moderate risk aversion
(
 = 5). We assume that the initial risky asset value S0 is equal to 100 and that
the initial portfolio value V0 is equal to 1000.

9510010511096098010201040 951001051109991001100210031004

Gaussian case, 
 = 0:3 Gaussian case, 
 = 59510010511002000400060008000100001200014000 9510010511080090011001200

Ambiguity case, 
 = 0:3 Ambiguity case, 
 = 59510010511002000400060008000 951001051102000300040005000600070008000

Mixture case, 
 = 0:3 Mixture case, 
 = 5
Figure 5. Comparison of the optimal payo¤s.

For the Gaussian case, the optimal payo¤ is almost linear on interval [90; 110],
since � = 0:507, which implies that exponents �=0:3 ' 1:7 and �=5 ' 0:1. When
the investor is weakly risk averse, he seeks to relatively high returns when the
risky asset rises, while accepting losses when the risky asset drops. If his risk
aversion is moderate, he prefers to get smaller returns for bullish market, which
allows him to get better returns for bearish market.
For the ambiguity case, the optimal payo¤ corresponds to the Gaussian

distribution N (m2 = 0:94%; �22 = 0:064%), since it has the smallest absolute
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value j�yj. For weakly risk aversion, the investor searches for higher returns
when the risky asset rises than for moderate risk aversion. Consequently, he
can loose much more when the market is bearish.
For the mixture case, we provide the expectation of the three optimal payo¤s

corresponding to the three Gaussian distributions of the mixture, weighted by
their respective coe¢ cients �i. For weak aversion, we note that the optimal pay-
o¤ is decreasing then increasing. This is mainly due to the following property:
for the �rst Gaussian distribution N (m1 = �4:96%; �21 = 0:26%), weighted by
�1 ' 25:15%, the optimal payo¤ is decreasing (since m1 < r), while, for the oth-
ers, it is increasing. Thus, the expectation of the optimal payo¤s is alternatively
decreasing and increasing.

4 Conclusion

In this paper, we have adopted a mixture of probability distributions to deal
with the optimal portfolio positioning problem. First, we have tested the suit-
ability of these mixtures to �t non linear �nancial assets. An empirical example
based on the monthly returns of the S&P 500 index proves that a three-Gaussian
mixture approximation leads to an improvement in the precision of the density
estimate. Second, we have analyzed the optimal portfolio positioning introduced
by Brennan and Solanki (1981) and by Leland (1980) for Gaussian log returns.
Our analysis extends these researches as follows: i) we solve the general port-
folio positioning problem and examine in particular the CRRA case when the
risk-neutral probability corresponds to the minimal measure; ii) we illustrate
the solution for a CRRA utility and for the minimal risk-neutral probability;
iii) we introduce the notion of ambiguity and we compare the expectation of
the optimal portfolio pro�le in the case of the mixture distribution with the
standard no mixture case and with the optimal payo¤ when the investor has an
aversion to ambiguity. As illustrated, the introduction of mixtures distributions
can generate optimal payo¤s that are not always an increasing function of the
underlying risky asset. Thus, our results show that mixture of distributions can
have signi�cant implications on the portfolio management. It allows improving
management of �nancial structured products by better taking account of market
risk and by providing a better adequacy to investor�s risk attitude.
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5 Appendix

Appendix 1. Binomial approximations with a random number of price
changes.

In what follows, we consider an extension of the well-known approximation
of the Black and Scholes model by the Cox-Ross-Rubinstein (1979) model. It
is based on approximations by binomial models with a random number of price
changes. This framework allows to take account of the random number of stock
prices changes. This feature is typically observed in �nancial data. The random-
ization of the number of price changes is based on an extension of the model of
Rachev-Ruschendorf (1995), as illustrated in Prigent (1999). In discrete-time,
the stock price is given by:

Sn;t = S0

k=Nn(t)Y
k=1

(1 + Yn;k); (19)

where:
1) The rates of returns Yn;k are equal to

�
n+Tn;k with � constant and (Tn;k)k

is a sequence of independent and identically distributed (i.i.d.) Bernoulli random
variables such that:

P [Tn;k =
up
n
] = p 2]0; 1[; P [Tn;k =

dp
n
] = 1� p = q:

Parameters u and d are assumed to satisfy pu+qd = 0. Denote � =
p
pu2 + qd2.

2) The sequence Nn(t) of the number of changes of prices until t is de�ned
as follows. Introduce the sequence (Nn)n of integer valued random variables

independent of Yn;k with E[Nn] = n and Nn

n

L! Y where Y is a positive random
variable. Consider the same subdivision (Ti)i of the interval [0; 1] as in Rachev-
Ruschendorf (1995): For all i, Ti+1� Ti = 1

Nn
. The stock price changes at each

time Ti. De�ne the sequence Nn(t) of the number of changes of prices until t.
That is : Nn(t) = [tNn]. Nn is known at the �rst time of change of price which
corresponds to the �rst time when Nn(t) is di¤erent from 0. If this �rst time is
"immediately" after 0,7 then we have E[Nn(t)jFn;s] = Nn(t). Theorem 4.3 in
Rachev-Ruschendorf (1995) implies the convergence of the sequence (Sn;t)n to
the price process (St)t where St veri�es:

St = S0exp[(��
1

2
�2)tY + �

p
Y dWt]; (20)

and, for t > 0, Ft is equal to the �-algebra of (Y;Ws; s � t).

7E[Nn(t)jFn;s] = E[Nn(t)jNn(s)] = Nn(t)IfNn(s) 6=0g + E[Nn(t)]IfNn(s)=0g.
Besides, P[Nn(s) = 0] = P[ 1

Nn
> s] and one has P[ 1

Nn
> s] ! 0 since Nn

n

L! Y :> 0

a.s. So without loss of generality, one can assume that the �rst time of change of price is
"immediatetly" after 0.
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Appendix 2. The minimal martingale measure.

In the special case of discrete models, under a few conditions (like nonde-
generacy ) on the mean-variance tradeo¤ process, Schweizer (1992) proves that
the expectation of contingent claim H with respect to the minimal measure
(denoted by E bP [H]) is the value of the variance-optimal hedging strategy. It
is the initial amount required for implementing a risk-minimizing strategy with
terminal payo¤ equal to the contingent claim H. Usually, this strategy is not
self-�nancing and may have a non-vanishing hedging cost. However, as soon as
the minimal martingale is a true probability, this value is an actual no-arbitrage
price.

All processes are de�ned on �ltered probability spaces (
;F ; (Ft); P ) in-
dexed on [0; T ] and satisfying the usual conditions. When X is a semimartin-
gale and K a predictable process integrable with respect to X, one denotes by
K:X the stochastic integral of K with respect to X. Let S2loc be the space of
semimartingales S such that S�t =: sup0�s�tjSsj is locally square integrable. In
what follows, the discounted underlying asset price will be denoted by (St)t.
It is a R-valued processs which is a special semimartingale with the canonical
decomposition

S = S0 +M +A; (21)

whereM is a local martingale and A is a predictable process with �nite variation.
Let hM;Mi denote the predictable quadratic variation of the martingale M .
Concerning the properties of existence and uniqueness of the minimal mar-

tingale measure, one uses the results of Ansel and Stricker (1992) and Choulli
and Stricker (1996). The stock prices S has the canonical decomposition:

S =M + �: hM;Mi ; (22)

where � is a predictable process that satis�es:

�2: hM;Mi <1 (23)

Ansel and Stricker (1992) prove the following existence result: If 1���M >
0 a.s. then the Doleans-Dade exponential Ẑ = E(��:M) is a local positive
martingale. The minimal martingale measure is a probability and its density
process is given by E(��:M). If P [1� ��M � 0] > 0, the minimal martingale
measure is no longer a probability. However, in this last case, if S is discrete,
this measure is usually a signed martingale measure bP as de�ned in Schweizer
(1992). It means that:bP [
] = 1, bP << P on F with d bP

dP 2 L
2(P ) and S is a ( bP ;F)- martingale in the

sense that : E
h
d bP
dP�SkjFk�1

i
= 0; P � a:s: for k = 1; :::; T .

This happens for instance for the basic example. In the one-dimensional case, it
is always possible to get an explicit form of the minimal martingale measure in
discrete time. The basis has the form (
n;Fn = (Fn;k)k; Pn) and the canonical
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decomposition of the discounted stock price process Sn = S0+Mn+An is given
by: �

An =
P

1�k�nE[Sn;k � Sn;k�1jFn;k�1];
Mn =

P
1�k�n(Sn;k � Sn;k�1 � E[Sn;k � Sn;k�1jFn;k�1]);

The minimal martingale measure is de�ned by:

d bPn
dPn

=
k=nY
k=1

(1� �n;k�Mn;k); (24)

where �n;k =
E[Sn;k�Sn;k�1jFn;k�1]

E[(Mn;k�Mn;k�1)2jFn;k�1] . Let Yn;k denote the rate of return of

Sn;k (Sn;k = Sn;k�1(1 + Yn;k)) and ~Yn;k denote the term E[Yn;kjFn;k�1]. We
get:

�n;k =
(~Yn;k)

Sn;k�1 � (E[Y 2n;kjFn;k�1]� ~Y 2n;k)
;

and
�Mn;k = Sn;k�1(Yn;k � ~Yn;k):

Then

�n;k�Mn;k =
(~Yn;k)(Yn;k � ~Yn;k)

(E[Y 2n;kjFn;k�1]� ~Y 2n;k)
:

For the basic example ( approximations by binomial models with a random
number of price changes), we can �rst explicitly calculate the price under the
minimal martingale measure then prove its robustness under weak convergence
(see Prigent, 1999). De�ne the �ltration Fn;t equal to the sub �-algebra of
(Nn(t); (Yn;k)k�Nn(t)). This implies the following relations:
(a)

Sn;t = S0E(Rn;t) with Rn;t =
k=Nn(t)X
k=1

Yn;k:

(b) The semimartingale Rn;t has the canonical decomposition

Rn;t = A
R
n;t +M

R
n;t;

with ARn;t = Nn(t)E[Yn;1] and M
R
n;t = Rn;t �Nn(t)E[Yn;1].

(c) Therefore the stock price Sn;t is equal to ASn;t +M
S
n;t where

dASn;t = Sn;t�E[Yn;1]dNn(t) and dM
S
n;t = Sn;t�dM

R
n;t:

(d) The process �n;t is de�ned by

�n;t =
1

S
n;

[nt]�1
Nn

E[Yn;1]

V ar[Yn;1]
:
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The previous assumptions imply the convergence of options prices under the
minimal martingale measure:

(Mn; hMn;Mni ; �n)
L(D3)�! (M; hM;Mi ; �);

with

Mt = �
p
Y

Z t

0

Su�dWu; hM;Mit = �
2Y

Z t

0

S2udu; �t =
1

St�

�

�2
:

Thus, we get the continuous-time model with its speci�c properties.
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